A053124 Triangle of coefficients of Chebyshev's U(n,2*x-1) polynomials (exponents of x in increasing order).
1, -2, 4, 3, -16, 16, -4, 40, -96, 64, 5, -80, 336, -512, 256, -6, 140, -896, 2304, -2560, 1024, 7, -224, 2016, -7680, 14080, -12288, 4096, -8, 336, -4032, 21120, -56320, 79872, -57344, 16384, 9, -480, 7392, -50688, 183040, -372736, 430080, -262144, 65536, -10, 660, -12672, 109824, -512512, 1397760, -2293760, 2228224
Offset: 0
Examples
{1}; {-2,4}; {3,-16,16}; {-4,40,-96,64}; {5,-80,336,-512,256};... E.g., fourth row (n=3) {-4,40,-96,64} corresponds to polynomial U(3,2*x-1)= -4+40*x-96*x^2+64*x^3.
References
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- G. Pólya and G. Szegő, Problems and Theorems in Analysis I (Springer 1924, reprinted 1972), Part One, Chap. 1, problem 39, page 7.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
Links
- T. D. Noe, Rows n = 0..50 of triangle, flattened
- C. Lanczos, Applied Analysis (Annotated scans of selected pages). See page 518.
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
Mathematica
Table[ CoefficientList[ ChebyshevU[n, 2x - 1], x], {n, 0, 9}] // Flatten (* Jean-François Alcover, Dec 05 2012 *)
Formula
a(n, m) := 0 if n < m, otherwise (4^m)*((-1)^(n-m))*binomial(n+m+1, 2*m+1);
a(n, m) = -2*a(n-1, m) + 4*a(n-1, m-1) - a(n-2, m), a(n, m) := 0 if n=-1 or m=-1 or n < m, a(0, 0)=1;
g.f. for m-th column (signed triangle): ((4*x/(1+x)^2)^m)/(1+x)^2.
In other words, Riordan array (1/(1+x)^2, 4x/(1+x)^2). - Ralf Stephan, Jan 21 2014
Comments