A053123 Triangle of coefficients of shifted Chebyshev's S(n,x-2) = U(n,x/2-1) polynomials (exponents of x in decreasing order).
1, 1, -2, 1, -4, 3, 1, -6, 10, -4, 1, -8, 21, -20, 5, 1, -10, 36, -56, 35, -6, 1, -12, 55, -120, 126, -56, 7, 1, -14, 78, -220, 330, -252, 84, -8, 1, -16, 105, -364, 715, -792, 462, -120, 9, 1, -18, 136, -560, 1365, -2002, 1716, -792, 165, -10, 1, -20, 171, -816, 2380, -4368, 5005, -3432, 1287, -220, 11, 1
Offset: 0
Examples
Triangle begins: 1; 1, -2; 1, -4, 3; 1, -6, 10, -4; 1, -8, 21, -20, 5; 1, -10, 36, -56, 35, -6; 1, -12, 55, -120, 126, -56, 7; ... E.g. fourth row (n=3) {1,-6,10,-4} corresponds to polynomial S(3,x-2) = x^3-6*x^2+10*x-4.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
- Stephen Barnett, "Matrices: Methods and Applications", Oxford University Press, 1990, p. 132, 343.
Links
- T. D. Noe, Rows n=0..50 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
GAP
Flat(List([0..10], n-> List([0..n], k-> (-1)^k*Binomial(2*n-k+1,k) ))); # G. C. Greubel, Jul 23 2019
-
Magma
[(-1)^k*Binomial(2*n-k+1,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Jul 23 2019
-
Maple
A053123 := proc(n,m) (-1)^m*binomial(2*n+1-m,m) ; end proc: # R. J. Mathar, Sep 08 2013
-
Mathematica
T[n_, m_]:= (-1)^m*Binomial[2*n+1-m, m]; Table[T[n, m], {n, 0, 11}, {m, 0, n}]//Flatten (* Jean-François Alcover, Mar 05 2014, after R. J. Mathar *)
-
PARI
for(n=0,10, for(k=0,n, print1((-1)^k*binomial(2*n-k+1,k), ", "))) \\ G. C. Greubel, Jul 23 2019
-
Sage
[[(-1)^k*binomial(2*n-k+1,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 23 2019
Formula
T(n, m) = 0 if n
T(n, m) = -2*T(n-1, m-1) + T(n-1, m) - T(n-2, m-2), T(n, -2) = 0, T(-2, m) = 0, T(n, -1) = 0 = T(-1, m), T(0, 0) = 1, T(n, m) = 0 if n
G.f. for m-th column (signed triangle): ((-1)^m)*x^m*Po(m+1, x)/(1-x)^(m+1), with Po(k, x) := Sum_{j=0..floor(k/2)} binomial(k, 2*j+1)*x^j.
The n-th degree polynomial is the characteristic equation for an n X n tridiagonal matrix with (diagonal = all 2's, sub and superdiagonals all -1's and the rest 0's), exemplified by the 4X4 matrix M = [2 -1 0 0 / -1 2 -1 0 / 0 -1 2 -1 / 0 0 -1 2]. - Gary W. Adamson, Jan 05 2005
Sum_{m=0..n} T(n,m)*(c(n))^(2*n-2*m) = 1/c(n), where c(n) = 2*cos(Pi/(2*n+3)). - L. Edson Jeffery, Sep 13 2013
A053125 Triangle of coefficients of Chebyshev's U(n,2*x-1) polynomials (exponents of x in decreasing order).
1, 4, -2, 16, -16, 3, 64, -96, 40, -4, 256, -512, 336, -80, 5, 1024, -2560, 2304, -896, 140, -6, 4096, -12288, 14080, -7680, 2016, -224, 7, 16384, -57344, 79872, -56320, 21120, -4032, 336, -8, 65536, -262144, 430080, -372736, 183040, -50688, 7392, -480, 9, 262144, -1179648, 2228224, -2293760, 1397760
Offset: 0
Comments
Examples
{1}; {4,-2}; {16,-16,3}; {64,-96,40,-4}; {256,-512,336,-80,5};... E.g. fourth row (n=3) corresponds to polynomial U^{*}(3,m)=U(3,2*x-1)= 64*x^3-96*x^2+40*x-4.
References
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
Links
- T. D. Noe, Rows n=0..50 of triangle, flattened
- W. Lang, First rows and related triangles .
- Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the Second Kind
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
Mathematica
Reverse /@ CoefficientList[Table[ChebyshevU[n, 2 x - 1], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 04 2018 *) Reverse /@ CoefficientList[ChebyshevU[Range[0, 10], 2 x - 1], x] // Flatten (* Eric W. Weisstein, Apr 04 2018 *)
Formula
a(n, m) = A053124(n, n-m)= (4^(n-m))*A053123(n, m)= (4^(n-m))*((-1)^m)*binomial(2*n+1-m, m) if n >= m, else 0.
a(n, m) := -2*a(n-1, m-1)+4*a(n-1, m)-a(n-2, m-2), a(-2, m) := 0=: a(n, -2), a(-1, m) := 0=: a(n, -1), a(0, 0)=1, a(n, m)=0 if n
G.f. for m-th column (signed triangle): ((-x)^m)*Po(m+1, 4*x)/(1-4*x)^(m+1), with Po(k, x) := sum('binomial(k, 2*j+1)*x^j', 'j'=0..floor(k/2)).
A002699 a(n) = n*2^(2*n-1).
0, 2, 16, 96, 512, 2560, 12288, 57344, 262144, 1179648, 5242880, 23068672, 100663296, 436207616, 1879048192, 8053063680, 34359738368, 146028888064, 618475290624, 2611340115968, 10995116277760, 46179488366592, 193514046488576
Offset: 0
Comments
Right side of binomial sum Sum(i * binomial(2*n, i), i=1..n) - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
Coefficients of shifted Chebyshev polynomials.
Starting with offset 1 = 4th binomial transform of [2, 8, 0, 0, 0, ...]. - Gary W. Adamson, Jul 21 2009
Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then a(n) = the sum of the size of the symmetric difference of x and y for every (x,y) of B. - Ross La Haye, Jan 04 2013
It's the relation [27] with T(n) in the document of Ross. Following the last comment of Ross, A002697 is the similar sequence when replacing "symmetric difference" by "intersection" and A212698 is the similar sequence when replacing "symmetric difference" by union. - Bernard Schott, Jan 04 2013
If Delta = Symmetric difference, here, X Delta Y and Y Delta X are considered as two distinct Cartesian products, if we want to consider that X Delta Y = X Delta Y is the same Cartesian product, see A002697. - Bernard Schott, Jan 15 2013
References
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Rebecca Bourn and William Q. Erickson, A palindromic polynomial connecting the earth mover's distance to minuscule lattices of Type A, arXiv:2307.02652 [math.CO], 2023.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (8,-16).
Programs
-
Magma
[n*2^(2*n-1): n in [0..30]]; /* or */ I:=[0, 2]; [n le 2 select I[n] else 8*Self(n-1)-16*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 20 2013
-
Maple
A002699 := n->n*2^(2*n-1); A002699:=2*z/(4*z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
-
Mathematica
Table[(n 2^(2 n - 1)), {n, 0, 30}] (* Vincenzo Librandi, Mar 20 2013 *) LinearRecurrence[{8,-16},{0,2},30] (* Harvey P. Dale, Dec 20 2015 *)
-
PARI
a(n)=n*2^(2*n-1) \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 2 * A002697(n). - Bernard Schott, Jan 04 2013
a(n) = 8*a(n-1)-16*a(n-2) with n>1, a(0)=0, a(1)=2. - Vincenzo Librandi, Mar 20 2013
G.f.: (2*x)/(1 - 4*x)^2. - Harvey P. Dale, Jul 28 2021
E.g.f.: (exp(4*x) - 1)/2. - Stefano Spezia, Aug 04 2022
A091044 One half of odd-numbered entries of even-numbered rows of Pascal's triangle A007318.
1, 2, 2, 3, 10, 3, 4, 28, 28, 4, 5, 60, 126, 60, 5, 6, 110, 396, 396, 110, 6, 7, 182, 1001, 1716, 1001, 182, 7, 8, 280, 2184, 5720, 5720, 2184, 280, 8, 9, 408, 4284, 15912, 24310, 15912, 4284, 408, 9, 10, 570, 7752, 38760, 83980, 83980, 38760, 7752, 570, 10, 11
Offset: 1
Comments
The odd-numbered columns of this triangle can be reduced: see triangle A091043.
The odd-numbered rows coincide with the ones of the reduced triangle A091043.
binomial(2*n,2*m+1) is even for n >= m + 1 >= 1, hence every T(n,m) is a positive integer.
The GCD (greatest common divisor) of the entries of each odd-numbered row n=2*k+1, k>=0, is 1.
The GCD of the entries of the even-numbered row n=2*k, k>=1, is A006519(n) (highest power of 2 in n=2*k).
Examples
Triangle begins: [1]; [2,2]; [3,10,3]; [4,28,28,4]; [5,60,126,60,5]; [6,110,396,396,110,6]; ... n = 6 = 2*3: gcd(6,110,396) = 2 = A006519(6); n = 5: gcd(5,60,126) = 1 = A006519(5).
Links
- Indranil Ghosh, Rows 1..125, flattened
- Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Honeycombs in the Pascal triangle and beyond, arXiv:2203.13205 [math.HO], 2022. See p. 4.
- Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote, and André Schulz, The Number of Convex Polyominoes with Given Height and Width, arXiv:1903.01095 [math.CO], 2019.
- Hernan de Alba, W. Carballosa, J. Leaños, and L. M. Rivera, Independence and matching numbers of some token graphs, arXiv preprint arXiv:1606.06370 [math.CO], 2016.
- Wolfdieter Lang, First 9 rows.
Programs
-
Mathematica
Flatten[Table[Binomial[2n,2m+1]/2,{n,1,11},{m,0,n-1}]] (* Indranil Ghosh, Feb 22 2017 *)
-
PARI
{A(i, j) = binomial(2*i + 2*j - 2, 2*i - 1) / 2}; /* Michael Somos, Oct 15 2017 */
Formula
T(n, m)= binomial(2*n, 2*m+1)/2, n >= m + 1 >= 1, else 0.
Put a(n) = n!*(n+1/2)!/(1/2)!. T(n+1,k) = (n+1)*a(n)/(a(k)*a(n-k)).
T(n-1,k-1)*T(n,k+1)*T(n+1,k) = T(n-1,k)*T(n,k-1)*T(n+1,k+1). Cf. A111910. - Peter Bala, Oct 13 2011
From Peter Bala, Jul 29 2013: (Start)
O.g.f.: 1/(1 - 2*t*(x + 1) + t^2*(x - 1)^2)= 1 + (2 + 2*x)*t + (3 + 10*x + 3*x^2)*t^2 + ....
The n-th row polynomial R(n,x) = 1/(4*sqrt(x))*( (1 + sqrt(x))^(2*n) - (sqrt(x) - 1)^(2*n) ) and has n-1 real zeros given by the formula -cot^2(k*Pi/(2*n)) for k = 1,2,...,n-1. Cf A091042.
The row polynomial R(n,x) satisfies (x - 1)^n*R(n,x/(x - 1)) = U(n,2*x - 1), the n-th row polynomial of A053124.
From Werner Schulte, Jan 13 2017: (Start)
(1) T(n,m) = T(n-1,m) + T(n-1,m-1)*(2*n-1-m)/m for 0 < m < n-1 with T(n,0) = n and T(n,n) = 0;
(2) T(n,m) = 2*T(n-1,m) + 2*T(n-1,m-1) - T(n-2,m) + 2*T(n-2,m-1) - T(n-2,m-2) for 0 < m < n-1 with T(n,0) = T(n,n-1) = n and T(n,m) = 0 if m < 0 or m >= n;
(3) The row polynomials p(n,x) = Sum_{m=0..n-1} T(n,m)*x^m satisfy the recurrence equation p(n+2,x) = (2+2*x)*p(n+1,x) - (x-1)^2*p(n,x) for n >= 1 with initial values p(1,x) = 1 and p(2,x) = 2+2*x.
(End)
G.f.: x*y /(1 - 2*(x+y) + (x-y)^2) with the entries regarded as an infinite square array A(i, j) read by antidiagonals. - Michael Somos, Oct 15 2017
Comments