A034870
Even-numbered rows of Pascal's triangle.
Original entry on oeis.org
1, 1, 2, 1, 1, 4, 6, 4, 1, 1, 6, 15, 20, 15, 6, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1, 1, 14, 91, 364, 1001, 2002, 3003, 3432, 3003, 2002, 1001, 364, 91, 14, 1
Offset: 0
Triangle begins:
1;
1, 2, 1;
1, 4, 6, 4, 1;
1, 6, 15, 20, 15, 6, 1;
1, 8, 28, 56, 70, 56, 28, 8, 1;
1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1;
1, 12, 66, 220, 495, 792, 924, 792, 495, 220, 66, 12, 1;
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
- Peter Bala, Notes on generalized Riordan arrays
- E. H. M. Brietzke, An identity of Andrews and a new method for the Riordan array proof of combinatorial identities, Discrete Math., 308 (2008), 4246-4262.
- Russell Jay Hendel, Proof that a(n,m) gives the number of n-digit, base-4 numbers with n-m more 1-digits than 2-digits.
- Wolfdieter Lang, First 9 rows.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Franck Ramaharo, A bracket polynomial for 2-tangle shadows, arXiv:2002.06672 [math.CO], 2020.
- Index entries for triangles and arrays related to Pascal's triangle
Cf.
A000302 (row sums, powers of 4), alternating row sums are 0, except for n=0 which gives 1.
-
a034870 n k = a034870_tabf !! n !! k
a034870_row n = a034870_tabf !! n
a034870_tabf = map a007318_row [0, 2 ..]
-- Reinhard Zumkeller, Apr 19 2012, Apr 02 2011
-
/* As triangle: */ [[Binomial(n,k): k in [0..n]]: n in [0.. 15 by 2]]; // Vincenzo Librandi, Jul 16 2015
-
T := (n,k) -> simplify(GegenbauerC(`if`(kPeter Luschny, May 08 2016
-
Flatten[Table[Binomial[n,k],{n,0,20,2},{k,0,n}]] (* Harvey P. Dale, Dec 15 2014 *)
-
taylor(1/(1-x*(y+1)^2),x,0,10,y,0,10); /* Vladimir Kruchinin, Nov 22 2020 */
-
flatten([[binomial(2*n, k) for k in (0..2*n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022
A111910
Square array read by antidiagonals: S(p,q) = (p+q+1)!(2p+2q+1)!/((p+1)!(2p+1)!(q+1)!(2q+1)!) (p,q>=0).
Original entry on oeis.org
1, 1, 1, 1, 5, 1, 1, 14, 14, 1, 1, 30, 84, 30, 1, 1, 55, 330, 330, 55, 1, 1, 91, 1001, 2145, 1001, 91, 1, 1, 140, 2548, 10010, 10010, 2548, 140, 1, 1, 204, 5712, 37128, 68068, 37128, 5712, 204, 1, 1, 285, 11628, 116280, 352716, 352716, 116280, 11628, 285, 1
Offset: 0
Array S(n,k) in rectangular form (n, k >= 0):
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 5, 14, 30, 55, 91, 140, 204, 285, ...
1, 14, 84, 330, 1001, 2548, 5712, 11628, 21945, ...
1, 30, 330, 2145, 10010, 37128, 116280, 319770, 793155, ...
1, 55, 1001, 10010, 68068, 352716, 1492260, 5393454, 17185025, ...
...
Array T(n,k) in triangular form (n >= 0 and 0 <= k <= n):
1,
1, 1,
1, 5, 1,
1, 14, 14, 1,
1, 30, 84, 30, 1,
1, 55, 330, 330, 55, 1,
1, 91, 1001, 2145, 1001, 91, 1,
...
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened).
- Germain Kreweras and Heinrich Niederhausen, Solution of an enumerative problem connected with lattice paths, European J. Combin. 2 (1981), 55-60.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 9.
- Anthony J. Wood, Richard A. Blythe, and Martin R. Evans, Combinatorial mappings of exclusion processes, arXiv:1908.00942 [cond-mat.stat-mech], 2019.
-
T:= func< n,k | Binomial(n+1, k)*Binomial(2*n+1, 2*k)/((k+1)*(2*k+1)) >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 12 2021
-
a:=(p,q)->(p+q+1)!*(2*p+2*q+1)!/(p+1)!/(2*p+1)!/(q+1)!/(2*q+1)!: for n from 0 to 10 do seq(a(j,n-j),j=0..n) od; # yields sequence in triangular form
-
Table[(# + q + 1)! (2 # + 2 q + 1)!/((# + 1)! (2 # + 1)! (q + 1)! (2 q + 1)!) &[r - q], {r, 0, 9}, {q, 0, r}] // Flatten (* Michael De Vlieger, Oct 21 2019 *)
Table[Binomial[n+1, k]*Binomial[2*n+1, 2*k]/((k+1)*(2*k+1)), {n, 0, 12}, {k, 0,
n}]//Flatten (* G. C. Greubel, Feb 12 2021 *)
-
def A111910(n,k): return binomial(n+1, k)*binomial(2*n+1, 2*k)/((k+1)*(2*k+1))
flatten([[A111910(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 12 2021
A381706
Three-dimensional array of the number b(n, k, i) of permutations of k chosen numbers in {1,2,...,n} with i-1 descents, n >= 1, 1 <= k <= n, 1 <= i <= n.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 11, 11, 1, 1, 11, 11, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 1, 1, 16, 26, 16, 1, 1, 26, 66, 26, 1, 1, 26, 66, 26, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 7, 1, 1, 22, 37, 37, 22, 1, 1, 42, 137, 137, 42, 1
Offset: 1
For n = 4 and k = 2, there are 12 permutations of 2 chosen numbers in {1,2,3,4}; the number of descents is defined to be the number of descents in the permutation of the chosen numbers, plus the number of non-chosen numbers greater than the first chosen number. For example, 32 has 2 descents because 3 is greater than 2 and 4 (a non-chosen number) is greater than 3. The four other permutations of 2 chosen numbers with 2 descents are 31, 12, 13, 14.
The sequence is most naturally viewed as a sequence of squares of size 1x1, 2x2, 3x3, 4x4, etc.
1 [E(1)]
1 1
1 1 [E(2)]
1 1 1
1 4 1
1 4 1 [E(3)]
1 1 1 1
1 5 5 1
1 11 11 1
1 11 11 1 [E(4)]
1 1 1 1 1
1 6 6 6 1
1 16 26 16 1
1 26 66 26 1
1 26 66 26 1 [E(5)]
...
[E(n)] refers to row n of A008292.
- Timothy Y. Chow, Table of n, a(n) for n = 1..385
- Timothy Chow et al., A new generalization of Eulerian numbers, MathOverflow, 2025.
- J.-L. Lin, The geometry and combinatorics of some Hessenberg varieties related to the permutohedral variety, The Electronic Journal of Combinatorics, Volume 31, Issue 3 (2024), Research Paper #P3.17.
-
beta := proc(n, k)
local b, p, plist, descents, s, i, r, R:
r := 1..n; R := {`$`(r)};
b := Array(r, fill=0);
plist := combinat:-permute(n, k):
for p in plist do
descents := 1:
s := R minus {op(p)}:
for i in s do
if i > p[1] then descents := descents + 1 end if:
end do:
for i to k-1 do
if p[i] > p[i+1] then descents := descents + 1 end if:
end do:
b[descents] := b[descents] + 1:
end do:
return b
end proc:
for n from 1 to 5 do seq(beta(n, k), k = 1..n) end do;
# After Max Alekseyev's PARI program:
b := (n, k, i) -> local p, t, j; add(add(binomial(n - p, t) * binomial(p - 1, n - k - t) * add(binomial(k, j)*(-1)^j*(i - t - j)^(n - t - p) * (i - 1 - t - j)^(k - n - 1 + t + p), j = 0..i-1-t), t = n+1-k-p..i-1), p = 1..n): seq(seq(seq(b(n, k, j), j = 1..n), k = 1..n), n = 1..6); # Peter Luschny, Mar 15 2025
-
{ b(n,k,i) = sum(p=1, n, sum(t=n+1-k-p,i-1, my(l=n+1-t-p); binomial(n-p,t) * binomial(p-1,n-k-t) * sum(j=0,i-1-t, binomial(k,j) * (-1)^j * (i-t-j)^(l-1) * (i-1-t-j)^(k-l) )) ); } \\ Max Alekseyev, Mar 14 2025
-
def beta(n: int, k: int) -> list[int]:
b = [0]*n
for p in Permutations(n, k):
descents = sum(int(not i in p and i > p[0]) for i in (1..n))
descents += sum(int(p[i-1] > p[i]) for i in (1..k-1))
b[descents] += 1
return b
def Trow(n) -> list[int]: return flatten([beta(n, k) for k in (1..n)])
for n in (1..6): print(f"{n}: ", Trow(n)) # Peter Luschny, Mar 11 2025
A324010
The sum of squares of the number of common points in all pairs of lattice paths from (0,0) to (x,y), for x >= 0, y >= 0 (the unnormalized second moment). The table is read by antidiagonals.
Original entry on oeis.org
1, 4, 4, 9, 26, 9, 16, 92, 92, 16, 25, 240, 474, 240, 25, 36, 520, 1704, 1704, 520, 36, 49, 994, 4879, 8084, 4879, 994, 49, 64, 1736, 11928, 29560, 29560, 11928, 1736, 64, 81, 2832, 25956, 89928, 134450, 89928, 25956, 2832, 81, 100, 4380, 51648, 238440, 498140, 498140, 238440, 51648, 4380, 100
Offset: 0
There are two lattice paths from (0,0) to (x,y)=(1,1): P1=(0,0),(1,0),(1,1) and P2=(0,0),(0,1),(1,1), and hence 4 pairs of lattice paths: (P1,P1),(P1,P2),(P2,P1),(P2,P2). The number of common points is 3,2,2,3, respectively, and the sum of the squares of these numbers is 9+4+4+9 = 26 = a(1,1).
Table begins
1 4 9 16 25 ...
4 26 92 240 520 ...
9 92 474 1704 4879 ...
16 240 1704 8084 29560 ...
25 520 4879 29560 134450 ...
...
See
A306687 for the lower triangular half of the same data, read by rows.
See
A091044 for the unnormalized first moment (the sum of the number of common points without squaring).
-
Table[(# + y + 1) Binomial[# + y + 2, # + 1] Binomial[# + y, #] - Binomial[2 # + 2 y + 2, 2 # + 1]/2 &[x - y], {x, 0, 9}, {y, 0, x}] // Flatten (* Michael De Vlieger, Apr 15 2019 *)
-
a(x,y) = (x+y+1)*binomial(x+y+2,x+1)*binomial(x+y,x)-binomial(2*x+2*y+2,2*x+1)/2;
matrix(10, 10, n, k, a(n-1,k-1)) \\ Michel Marcus, Apr 08 2019
Showing 1-4 of 4 results.
Comments