cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A140136 Numerator coefficients for generators of lattice path enumeration square array A111910.

Original entry on oeis.org

1, 1, 1, 1, 7, 7, 1, 1, 20, 75, 75, 20, 1, 1, 42, 364, 1001, 1001, 364, 42, 1, 1, 75, 1212, 6720, 15288, 15288, 6720, 1212, 75, 1, 1, 121, 3223, 30723, 127908, 255816, 255816, 127908, 30723, 3223, 121, 1, 1, 182, 7371, 109538, 737737, 2510508
Offset: 0

Views

Author

Paul Barry, May 09 2008

Keywords

Examples

			Triangle begins:
  1;
  1,  1;
  1,  7,    7,     1;
  1, 20,   75,    75,    20,     1;
  1, 42,  364,  1001,  1001,   364,   42,    1;
  1, 75, 1212,  6720, 15288, 15288, 6720, 1212, 75, 1;
  ...
		

Crossrefs

Row sums are A006335.
Cf. A111910.

Programs

  • Mathematica
    T[n_, k_] := ((k + n - 1)! (2 (k + n) - 3)! HypergeometricPFQ[{2 - 3 k, 1/2 - n, 1 - n, -n}, {1 - k - n, 3/2 - k - n, 2 - k - n}, 1])/(k! (2 k - 1)! n! (2 n - 1)!);
    Join[{{1}}, Table[T[n, k], {k, 2, 8}, {n, 1, 2 k - 2}]] // Flatten (* Peter Luschny, Sep 04 2019 *)

Formula

(Sum_{k=0..n} T(n,k) * x^k) / (1-x)^(3*n+1) generates row n of A111910.
Triangle T(q,n), where T(n,q) = Sum_{j = 0..n} (-1)^j*C(3*q+1,j)*K(n-j,q) with K(p,q) = A111910(p,q).

A196148 Antidiagonal sums of square array A111910.

Original entry on oeis.org

1, 2, 7, 30, 146, 772, 4331, 25398, 154158, 961820, 6137734, 39909740, 263665252, 1765815560, 11966535091, 81937361702, 566185489878, 3944202596652, 27676632525362, 195481707009220, 1388890568962556
Offset: 0

Views

Author

Peter Bala, Oct 13 2011

Keywords

Crossrefs

Cf. A111910.
Cf. A174119.

Programs

  • Magma
    [(&+[(n-j+1)*Binomial(n+1, j)*Binomial(2*n+4, 2*j+2)/((n+1)*(n+2)*(2*n+3)): j in [0..n]]): n in [0..25]]; // G. C. Greubel, Feb 11 2021
  • Mathematica
    Table[Sum[(n+1)! * (2*n+1)! / ((n-k+1)! * (k+1)! * (2*n-2*k+1)! * (2*k+1)!), {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Dec 16 2017 *)
    Table[HypergeometricPFQ[{-n, -n-1/2, -n-1}, {3/2, 2}, -1], {n,0,25}] (* G. C. Greubel, Feb 11 2021 *)
  • PARI
    S(n,k) = (n+k+1)!*(2*n+2*k+1)!/((n+1)!*(k+1)!*(2*n+1)!*(2*k+1)!);
    a(n) = sum(k = 0, n, S(n-k,k)); \\ Michel Marcus, Dec 16 2017
    
  • Sage
    [hypergeometric([-n, -n-1/2, -n-1], [3/2, 2], -1).simplify_hypergeometric() for n in (0..25)] # G. C. Greubel, Feb 11 2021
    

Formula

a(n) = Sum_{k = 0..n} S(n-k,k) where S(n,k) = (n+k+1)!*(2*n+2*k+1)!/((n+1)!*(k+1)!*(2*n+1)!*(2*k+1)!).
From Vaclav Kotesovec, Dec 16 2017: (Start)
a(n) ~ 2^(3*n+3) / (sqrt(3*Pi) * n^(5/2)).
Recurrence: (n+2)*(2*n+3)*a(n) = 2*(7*n^2 + 7*n + 1)*a(n-1) + 8*(n-1)*(2*n-1)*a(n-2). (End)
a(n) = hypergeometric3F2([-n, -n-1/2, -n-1], [3/2, 2], -1). - G. C. Greubel, Feb 11 2021
Let E(x) = Sum_{n >= 0} x^n/((n+1)!*(2*n+1)!). Then E(x)^2 = 1 + 2*x/(2!*3!) + 7*x^2/(3!*5!) + 30*x^3/(4!*7!) + ... + a(n)*x^n/((n+1)!*(2*n+1)!) + ... is a generating function for the sequence. - Peter Bala, Sep 20 2021

A174119 Triangle T(n, k) = ((n-k)/6)*binomial(n-1, k-1)*binomial(2*n, 2*k) with T(n, 0) = T(n, n) = 1, read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 14, 70, 14, 1, 1, 30, 420, 420, 30, 1, 1, 55, 1650, 4620, 1650, 55, 1, 1, 91, 5005, 30030, 30030, 5005, 91, 1, 1, 140, 12740, 140140, 300300, 140140, 12740, 140, 1, 1, 204, 28560, 519792, 2042040, 2042040, 519792, 28560, 204, 1, 1, 285, 58140, 1627920, 10581480, 19399380, 10581480, 1627920, 58140, 285, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 08 2010

Keywords

Examples

			Triangle begins as:
  1;
  1,   1;
  1,   1,     1;
  1,   5,     5,       1;
  1,  14,    70,      14,        1;
  1,  30,   420,     420,       30,        1;
  1,  55,  1650,    4620,     1650,       55,        1;
  1,  91,  5005,   30030,    30030,     5005,       91,       1;
  1, 140, 12740,  140140,   300300,   140140,    12740,     140,     1;
  1, 204, 28560,  519792,  2042040,  2042040,   519792,   28560,   204,   1;
  1, 285, 58140, 1627920, 10581480, 19399380, 10581480, 1627920, 58140, 285, 1;
		

Crossrefs

Programs

  • Magma
    T:= func< n,k | k eq 0 or k eq n select 1 else ((n-k)/6)*Binomial(n-1, k-1)*Binomial(2*n, 2*k) >;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
  • Mathematica
    (* First program *)
    c[n_]:= If[n<2, 1, Product[j*(j-1)*(2*j-1)/6, {j, 2, n}]];
    T[n_, k_]:= c[n]/(c[k]*c[n-k]);
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
    (* Second program *)
    T[n_, k_]:= If[k==0 || k==n, 1, ((n-k)/6)*Binomial[n-1, k-1]*Binomial[2*n, 2*k]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
  • Sage
    def T(n,k): return 1 if (k==0 or k==n) else ((n-k)/6)*binomial(n-1, k-1)*binomial(2*n, 2*k)
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
    

Formula

T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j=2..n} j*(j-1)*(2*j-1)/6 for n > 2 otherwise 1.
From G. C. Greubel, Feb 11 2021: (Start)
T(n, k) = ((n-k)/6)*binomial(n-1, k-1)*binomial(2*n, 2*k) with T(n, 0) = T(n, n) =1.
Sum_{k=0..n} T(n, k) = (n*(n-1)*(2*n-1)/6)*HypergeometricPFQ[{1-n, 3/2-n, 2-n}, {3/2, 2}, -1] + 2 - [n=0] (n*(n-1)*(2*n-1)/6)*A196148[n-2] + 2 - [n=0]. (End)

Extensions

Edited by G. C. Greubel, Feb 11 2021

A091044 One half of odd-numbered entries of even-numbered rows of Pascal's triangle A007318.

Original entry on oeis.org

1, 2, 2, 3, 10, 3, 4, 28, 28, 4, 5, 60, 126, 60, 5, 6, 110, 396, 396, 110, 6, 7, 182, 1001, 1716, 1001, 182, 7, 8, 280, 2184, 5720, 5720, 2184, 280, 8, 9, 408, 4284, 15912, 24310, 15912, 4284, 408, 9, 10, 570, 7752, 38760, 83980, 83980, 38760, 7752, 570, 10, 11
Offset: 1

Views

Author

Wolfdieter Lang, Jan 23 2004

Keywords

Comments

The odd-numbered columns of this triangle can be reduced: see triangle A091043.
The odd-numbered rows coincide with the ones of the reduced triangle A091043.
binomial(2*n,2*m+1) is even for n >= m + 1 >= 1, hence every T(n,m) is a positive integer.
The GCD (greatest common divisor) of the entries of each odd-numbered row n=2*k+1, k>=0, is 1.
The GCD of the entries of the even-numbered row n=2*k, k>=1, is A006519(n) (highest power of 2 in n=2*k).

Examples

			Triangle begins:
  [1];
  [2,2];
  [3,10,3];
  [4,28,28,4];
  [5,60,126,60,5];
  [6,110,396,396,110,6];
  ...
n = 6 = 2*3: gcd(6,110,396) = 2 = A006519(6);
n = 5: gcd(5,60,126) = 1 = A006519(5).
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Binomial[2n,2m+1]/2,{n,1,11},{m,0,n-1}]] (* Indranil Ghosh, Feb 22 2017 *)
  • PARI
    {A(i, j) = binomial(2*i + 2*j - 2, 2*i - 1) / 2}; /* Michael Somos, Oct 15 2017 */

Formula

T(n, m)= binomial(2*n, 2*m+1)/2, n >= m + 1 >= 1, else 0.
Put a(n) = n!*(n+1/2)!/(1/2)!. T(n+1,k) = (n+1)*a(n)/(a(k)*a(n-k)).
T(n-1,k-1)*T(n,k+1)*T(n+1,k) = T(n-1,k)*T(n,k-1)*T(n+1,k+1). Cf. A111910. - Peter Bala, Oct 13 2011
From Peter Bala, Jul 29 2013: (Start)
O.g.f.: 1/(1 - 2*t*(x + 1) + t^2*(x - 1)^2)= 1 + (2 + 2*x)*t + (3 + 10*x + 3*x^2)*t^2 + ....
The n-th row polynomial R(n,x) = 1/(4*sqrt(x))*( (1 + sqrt(x))^(2*n) - (sqrt(x) - 1)^(2*n) ) and has n-1 real zeros given by the formula -cot^2(k*Pi/(2*n)) for k = 1,2,...,n-1. Cf A091042.
The row polynomial R(n,x) satisfies (x - 1)^n*R(n,x/(x - 1)) = U(n,2*x - 1), the n-th row polynomial of A053124.
Row sums A000302. Sum {k = 0..n-1} 2^k*T(n,k) = A001109(n). (End)
From Werner Schulte, Jan 13 2017: (Start)
(1) T(n,m) = T(n-1,m) + T(n-1,m-1)*(2*n-1-m)/m for 0 < m < n-1 with T(n,0) = n and T(n,n) = 0;
(2) T(n,m) = 2*T(n-1,m) + 2*T(n-1,m-1) - T(n-2,m) + 2*T(n-2,m-1) - T(n-2,m-2) for 0 < m < n-1 with T(n,0) = T(n,n-1) = n and T(n,m) = 0 if m < 0 or m >= n;
(3) The row polynomials p(n,x) = Sum_{m=0..n-1} T(n,m)*x^m satisfy the recurrence equation p(n+2,x) = (2+2*x)*p(n+1,x) - (x-1)^2*p(n,x) for n >= 1 with initial values p(1,x) = 1 and p(2,x) = 2+2*x.
(End)
G.f.: x*y /(1 - 2*(x+y) + (x-y)^2) with the entries regarded as an infinite square array A(i, j) read by antidiagonals. - Michael Somos, Oct 15 2017

A111911 a(n) = (4*n+1)!/( (2*n+1)! * ((n+1)!)^2 ).

Original entry on oeis.org

1, 5, 84, 2145, 68068, 2469012, 98062800, 4159088505, 185392049700, 8592433629780, 410935420867920, 20167102448028900, 1011343194858833424, 51656474975499371600, 2680436673901084633920, 141007991981718802584105, 7507710828193055843153700
Offset: 0

Views

Author

Emeric Deutsch, Aug 19 2005

Keywords

Comments

Main diagonal of the square array A111910, i.e., a(n) = A111910(n,n).

Crossrefs

Cf. A111910.
Cf. A000108.

Programs

  • Magma
    [((4*n+1)/(n+1))*Catalan(n)*Catalan(2*n): n in [0..30]]; // G. C. Greubel, Feb 12 2021
  • Maple
    a:=n->1/(2*n+1)!*(4*n+1)!/(n+1)!^2: seq(a(n),n=1..17);
    ogf := -1/(4*x)-Int(x^(-3/2)*hypergeom([-1/4, 1/4],[1],64*x),x)/(8*x^(1/2));
    series( eval(ogf, Int = proc(a,x) int(series(a,x=0,32),x) end), x=0, 30); # Mark van Hoeij, May 01 2013
  • Mathematica
    Table[((4*n+1)/(n+1))*CatalanNumber[n]*CatalanNumber[2*n], {n,0,30}] (* G. C. Greubel, Feb 12 2021 *)
  • Sage
    [((4*n+1)/(n+1))*catalan_number(n)*catalan_number(2*n) for n in (0..30)] # G. C. Greubel, Feb 12 2021
    

Formula

G.f.: expression with a 2F1 function and an anti-derivative, see Maple program below. - Mark van Hoeij, May 01 2013
a(n) ~ 2^(6*n + 1/2) / (Pi * n^3). - Vaclav Kotesovec, Dec 16 2017
D-finite with recurrence (2*n+1)*(n+1)^2*a(n) -4*(4*n+1)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Feb 08 2021
From G. C. Greubel, Feb 12 2021: (Start)
a(n) = binomial(4*n+1, 2*n+1)*binomial(2*n, n)/(n+1)^2.
a(n) = ((4*n+1)/(n+1))*C_{n}*C_{2*n}, where C_{n} are the Catalan numbers (A000108). (End)
Showing 1-5 of 5 results.