A140136
Numerator coefficients for generators of lattice path enumeration square array A111910.
Original entry on oeis.org
1, 1, 1, 1, 7, 7, 1, 1, 20, 75, 75, 20, 1, 1, 42, 364, 1001, 1001, 364, 42, 1, 1, 75, 1212, 6720, 15288, 15288, 6720, 1212, 75, 1, 1, 121, 3223, 30723, 127908, 255816, 255816, 127908, 30723, 3223, 121, 1, 1, 182, 7371, 109538, 737737, 2510508
Offset: 0
Triangle begins:
1;
1, 1;
1, 7, 7, 1;
1, 20, 75, 75, 20, 1;
1, 42, 364, 1001, 1001, 364, 42, 1;
1, 75, 1212, 6720, 15288, 15288, 6720, 1212, 75, 1;
...
- Michael De Vlieger, Table of n, a(n) for n = 0..10100 (rows 0..100, flattened)
- G. Kreweras, Sur une classe de problèmes de dénombrement liés au treillis des partitions des entiers, Cahiers du B.U.R.O. 6 (1965), 9-107; see p. 93.
- G. Kreweras and H. Niederhausen, Solution of an enumerative problem connected with lattice paths, European J. Combin. 2 (1981), 55-60; see p. 60.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 8.
-
T[n_, k_] := ((k + n - 1)! (2 (k + n) - 3)! HypergeometricPFQ[{2 - 3 k, 1/2 - n, 1 - n, -n}, {1 - k - n, 3/2 - k - n, 2 - k - n}, 1])/(k! (2 k - 1)! n! (2 n - 1)!);
Join[{{1}}, Table[T[n, k], {k, 2, 8}, {n, 1, 2 k - 2}]] // Flatten (* Peter Luschny, Sep 04 2019 *)
A196148
Antidiagonal sums of square array A111910.
Original entry on oeis.org
1, 2, 7, 30, 146, 772, 4331, 25398, 154158, 961820, 6137734, 39909740, 263665252, 1765815560, 11966535091, 81937361702, 566185489878, 3944202596652, 27676632525362, 195481707009220, 1388890568962556
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..1000
- Anthony James Wood, Nonequilibrium steady states from a random-walk perspective, Ph. D. Thesis, The University of Edinburgh (Scotland, UK 2019).
- Anthony J. Wood, Richard A. Blythe, and Martin R. Evans, Renyi entropy of the totally asymmetric exclusion process, arXiv:1708.00303 [cond-mat.stat-mech], 2017.
- Anthony J. Wood, Richard A. Blythe, and Martin R. Evans, Combinatorial mappings of exclusion processes, arXiv:1908.00942 [cond-mat.stat-mech], 2019.
-
[(&+[(n-j+1)*Binomial(n+1, j)*Binomial(2*n+4, 2*j+2)/((n+1)*(n+2)*(2*n+3)): j in [0..n]]): n in [0..25]]; // G. C. Greubel, Feb 11 2021
-
Table[Sum[(n+1)! * (2*n+1)! / ((n-k+1)! * (k+1)! * (2*n-2*k+1)! * (2*k+1)!), {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Dec 16 2017 *)
Table[HypergeometricPFQ[{-n, -n-1/2, -n-1}, {3/2, 2}, -1], {n,0,25}] (* G. C. Greubel, Feb 11 2021 *)
-
S(n,k) = (n+k+1)!*(2*n+2*k+1)!/((n+1)!*(k+1)!*(2*n+1)!*(2*k+1)!);
a(n) = sum(k = 0, n, S(n-k,k)); \\ Michel Marcus, Dec 16 2017
-
[hypergeometric([-n, -n-1/2, -n-1], [3/2, 2], -1).simplify_hypergeometric() for n in (0..25)] # G. C. Greubel, Feb 11 2021
A174119
Triangle T(n, k) = ((n-k)/6)*binomial(n-1, k-1)*binomial(2*n, 2*k) with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 14, 70, 14, 1, 1, 30, 420, 420, 30, 1, 1, 55, 1650, 4620, 1650, 55, 1, 1, 91, 5005, 30030, 30030, 5005, 91, 1, 1, 140, 12740, 140140, 300300, 140140, 12740, 140, 1, 1, 204, 28560, 519792, 2042040, 2042040, 519792, 28560, 204, 1, 1, 285, 58140, 1627920, 10581480, 19399380, 10581480, 1627920, 58140, 285, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 5, 5, 1;
1, 14, 70, 14, 1;
1, 30, 420, 420, 30, 1;
1, 55, 1650, 4620, 1650, 55, 1;
1, 91, 5005, 30030, 30030, 5005, 91, 1;
1, 140, 12740, 140140, 300300, 140140, 12740, 140, 1;
1, 204, 28560, 519792, 2042040, 2042040, 519792, 28560, 204, 1;
1, 285, 58140, 1627920, 10581480, 19399380, 10581480, 1627920, 58140, 285, 1;
-
T:= func< n,k | k eq 0 or k eq n select 1 else ((n-k)/6)*Binomial(n-1, k-1)*Binomial(2*n, 2*k) >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
-
(* First program *)
c[n_]:= If[n<2, 1, Product[j*(j-1)*(2*j-1)/6, {j, 2, n}]];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
(* Second program *)
T[n_, k_]:= If[k==0 || k==n, 1, ((n-k)/6)*Binomial[n-1, k-1]*Binomial[2*n, 2*k]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
-
def T(n,k): return 1 if (k==0 or k==n) else ((n-k)/6)*binomial(n-1, k-1)*binomial(2*n, 2*k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
A091044
One half of odd-numbered entries of even-numbered rows of Pascal's triangle A007318.
Original entry on oeis.org
1, 2, 2, 3, 10, 3, 4, 28, 28, 4, 5, 60, 126, 60, 5, 6, 110, 396, 396, 110, 6, 7, 182, 1001, 1716, 1001, 182, 7, 8, 280, 2184, 5720, 5720, 2184, 280, 8, 9, 408, 4284, 15912, 24310, 15912, 4284, 408, 9, 10, 570, 7752, 38760, 83980, 83980, 38760, 7752, 570, 10, 11
Offset: 1
Triangle begins:
[1];
[2,2];
[3,10,3];
[4,28,28,4];
[5,60,126,60,5];
[6,110,396,396,110,6];
...
n = 6 = 2*3: gcd(6,110,396) = 2 = A006519(6);
n = 5: gcd(5,60,126) = 1 = A006519(5).
- Indranil Ghosh, Rows 1..125, flattened
- Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Honeycombs in the Pascal triangle and beyond, arXiv:2203.13205 [math.HO], 2022. See p. 4.
- Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote, and André Schulz, The Number of Convex Polyominoes with Given Height and Width, arXiv:1903.01095 [math.CO], 2019.
- Hernan de Alba, W. Carballosa, J. Leaños, and L. M. Rivera, Independence and matching numbers of some token graphs, arXiv preprint arXiv:1606.06370 [math.CO], 2016.
- Wolfdieter Lang, First 9 rows.
-
Flatten[Table[Binomial[2n,2m+1]/2,{n,1,11},{m,0,n-1}]] (* Indranil Ghosh, Feb 22 2017 *)
-
{A(i, j) = binomial(2*i + 2*j - 2, 2*i - 1) / 2}; /* Michael Somos, Oct 15 2017 */
A111911
a(n) = (4*n+1)!/( (2*n+1)! * ((n+1)!)^2 ).
Original entry on oeis.org
1, 5, 84, 2145, 68068, 2469012, 98062800, 4159088505, 185392049700, 8592433629780, 410935420867920, 20167102448028900, 1011343194858833424, 51656474975499371600, 2680436673901084633920, 141007991981718802584105, 7507710828193055843153700
Offset: 0
-
[((4*n+1)/(n+1))*Catalan(n)*Catalan(2*n): n in [0..30]]; // G. C. Greubel, Feb 12 2021
-
a:=n->1/(2*n+1)!*(4*n+1)!/(n+1)!^2: seq(a(n),n=1..17);
ogf := -1/(4*x)-Int(x^(-3/2)*hypergeom([-1/4, 1/4],[1],64*x),x)/(8*x^(1/2));
series( eval(ogf, Int = proc(a,x) int(series(a,x=0,32),x) end), x=0, 30); # Mark van Hoeij, May 01 2013
-
Table[((4*n+1)/(n+1))*CatalanNumber[n]*CatalanNumber[2*n], {n,0,30}] (* G. C. Greubel, Feb 12 2021 *)
-
[((4*n+1)/(n+1))*catalan_number(n)*catalan_number(2*n) for n in (0..30)] # G. C. Greubel, Feb 12 2021
Showing 1-5 of 5 results.
Comments