A174116
Triangle T(n, k) = (n/2)*binomial(n-1, k-1)*binomial(n-1, k) with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 6, 18, 6, 1, 1, 10, 60, 60, 10, 1, 1, 15, 150, 300, 150, 15, 1, 1, 21, 315, 1050, 1050, 315, 21, 1, 1, 28, 588, 2940, 4900, 2940, 588, 28, 1, 1, 36, 1008, 7056, 17640, 17640, 7056, 1008, 36, 1, 1, 45, 1620, 15120, 52920, 79380, 52920, 15120, 1620, 45, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 3, 3, 1;
1, 6, 18, 6, 1;
1, 10, 60, 60, 10, 1;
1, 15, 150, 300, 150, 15, 1;
1, 21, 315, 1050, 1050, 315, 21, 1;
1, 28, 588, 2940, 4900, 2940, 588, 28, 1;
1, 36, 1008, 7056, 17640, 17640, 7056, 1008, 36, 1;
1, 45, 1620, 15120, 52920, 79380, 52920, 15120, 1620, 45, 1;
-
T:= func< n,k | k eq 0 or k eq n select 1 else (n/2)*Binomial(n-1, k-1)*Binomial(n-1, k) >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
-
(* First program *)
c[n_]:= If[n<2, 1, Product[Binomial[j,2], {j, 2, n}]];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
(* Second program *)
T[n_, k_]:= If[k==0 || k==n, 1, (n/2)*Binomial[n-1, k-1]*Binomial[n-1, k]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
-
def T(n,k): return 1 if (k==0 or k==n) else (n/2)*binomial(n-1, k-1)*binomial(n-1, k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
A174117
Triangle T(n, k) = (2*k/(k+1))*binomial(n-1, k)*binomial(n+1, k) with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 8, 8, 1, 1, 15, 40, 15, 1, 1, 24, 120, 120, 24, 1, 1, 35, 280, 525, 280, 35, 1, 1, 48, 560, 1680, 1680, 560, 48, 1, 1, 63, 1008, 4410, 7056, 4410, 1008, 63, 1, 1, 80, 1680, 10080, 23520, 23520, 10080, 1680, 80, 1, 1, 99, 2640, 20790, 66528, 97020, 66528, 20790, 2640, 99, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 8, 8, 1;
1, 15, 40, 15, 1;
1, 24, 120, 120, 24, 1;
1, 35, 280, 525, 280, 35, 1;
1, 48, 560, 1680, 1680, 560, 48, 1;
1, 63, 1008, 4410, 7056, 4410, 1008, 63, 1;
1, 80, 1680, 10080, 23520, 23520, 10080, 1680, 80, 1;
1, 99, 2640, 20790, 66528, 97020, 66528, 20790, 2640, 99, 1;
-
T:= func< n,k | k eq 0 or k eq n select 1 else (2*k/(k+1))*Binomial(n-1, k)*Binomial(n+1, k) >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
-
(* First program *)
c[n_]:= If[n<2, 1, Product[i^2 -1, {i,2,n}]];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
(* Second program *)
T[n_, k_]:= If[k==0 || k==n, 1, (2*k/(k+1))*Binomial[n+1, k]*Binomial[n-1, k]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
-
def T(n,k): return 1 if (k==0 or k==n) else (2*k/(k+1))*binomial(n-1, k)*binomial(n+1, k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
A174124
Triangle T(n, k, q) = (q+1)*binomial(n, k)*(Pochhammer(q+1, n)/(Pochhammer(q+1, k)*Pochhammer(q+1, n-k))), with T(n, 0) = T(n, n) = 1, and q = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 6, 1, 1, 12, 12, 1, 1, 20, 40, 20, 1, 1, 30, 100, 100, 30, 1, 1, 42, 210, 350, 210, 42, 1, 1, 56, 392, 980, 980, 392, 56, 1, 1, 72, 672, 2352, 3528, 2352, 672, 72, 1, 1, 90, 1080, 5040, 10584, 10584, 5040, 1080, 90, 1, 1, 110, 1650, 9900, 27720, 38808, 27720, 9900, 1650, 110, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 6, 1;
1, 12, 12, 1;
1, 20, 40, 20, 1;
1, 30, 100, 100, 30, 1;
1, 42, 210, 350, 210, 42, 1;
1, 56, 392, 980, 980, 392, 56, 1;
1, 72, 672, 2352, 3528, 2352, 672, 72, 1;
1, 90, 1080, 5040, 10584, 10584, 5040, 1080, 90, 1;
1, 110, 1650, 9900, 27720, 38808, 27720, 9900, 1650, 110, 1;
Cf. this sequence (q=1),
A174125 (q=2).
-
c:= func< n,q | n lt 2 select 1 else (&*[j*(j+q): j in [2..n]]) >;
T:= func< n,k,q | c(n, q)/(c(k, q)*c(n-k, q)) >;
[T(n,k,1): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
-
(* First program *)
c[n_, q_]:= If[n<2, 1, Product[i*(i+q), {i,2,n}]];
T[n_, m_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]);
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten
(* Second program *)
T[n_, k_, q_]:= If[k==0 || k==n, 1, (q+1)*Binomial[n, k]*(Pochhammer[q+1, n]/(Pochhammer[q+1, k]*Pochhammer[q+1, n-k]))];
Table[T[n,k,1], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
-
def T(n,k,q): return 1 if (k==0 or k==n) else (q+1)*binomial(n, k)*(rising_factorial(q+1, n)/(rising_factorial(q+1, k)*rising_factorial(q+1, n-k)))
flatten([[T(n,k,1) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
A174125
Triangle T(n, k, q) = (q+1)*binomial(n, k)*(Pochhammer(q+1, n)/(Pochhammer(q+1, k)*Pochhammer(q+1, n-k))), with T(n, 0) = T(n, n) = 1, and q = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 15, 15, 1, 1, 24, 45, 24, 1, 1, 35, 105, 105, 35, 1, 1, 48, 210, 336, 210, 48, 1, 1, 63, 378, 882, 882, 378, 63, 1, 1, 80, 630, 2016, 2940, 2016, 630, 80, 1, 1, 99, 990, 4158, 8316, 8316, 4158, 990, 99, 1, 1, 120, 1485, 7920, 20790, 28512, 20790, 7920, 1485, 120, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 15, 15, 1;
1, 24, 45, 24, 1;
1, 35, 105, 105, 35, 1;
1, 48, 210, 336, 210, 48, 1;
1, 63, 378, 882, 882, 378, 63, 1;
1, 80, 630, 2016, 2940, 2016, 630, 80, 1;
1, 99, 990, 4158, 8316, 8316, 4158, 990, 99, 1;
1, 120, 1485, 7920, 20790, 28512, 20790, 7920, 1485, 120, 1;
Cf.
A174124 (q=1), this sequence (q=2).
-
c:= func< n,q | n lt 2 select 1 else (&*[j*(j+q): j in [2..n]]) >;
T:= func< n,k,q | c(n, q)/(c(k, q)*c(n-k, q)) >;
[T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
-
(* First program *)
c[n_, q_]:= If[n<2, 1, Product[i*(i+q), {i,2,n}]];
T[n_, m_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]);
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten
(* Second program *)
T[n_, k_, q_]:= If[k==0 || k==n, 1, (q+1)*Binomial[n, k]*(Pochhammer[q+1, n]/(Pochhammer[q+1, k]*Pochhammer[q+1, n-k]))];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
-
def T(n,k,q): return 1 if (k==0 or k==n) else (q+1)*binomial(n, k)*(rising_factorial(q+1, n)/(rising_factorial(q+1, k)*rising_factorial(q+1, n-k)))
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
A196148
Antidiagonal sums of square array A111910.
Original entry on oeis.org
1, 2, 7, 30, 146, 772, 4331, 25398, 154158, 961820, 6137734, 39909740, 263665252, 1765815560, 11966535091, 81937361702, 566185489878, 3944202596652, 27676632525362, 195481707009220, 1388890568962556
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..1000
- Anthony James Wood, Nonequilibrium steady states from a random-walk perspective, Ph. D. Thesis, The University of Edinburgh (Scotland, UK 2019).
- Anthony J. Wood, Richard A. Blythe, and Martin R. Evans, Renyi entropy of the totally asymmetric exclusion process, arXiv:1708.00303 [cond-mat.stat-mech], 2017.
- Anthony J. Wood, Richard A. Blythe, and Martin R. Evans, Combinatorial mappings of exclusion processes, arXiv:1908.00942 [cond-mat.stat-mech], 2019.
-
[(&+[(n-j+1)*Binomial(n+1, j)*Binomial(2*n+4, 2*j+2)/((n+1)*(n+2)*(2*n+3)): j in [0..n]]): n in [0..25]]; // G. C. Greubel, Feb 11 2021
-
Table[Sum[(n+1)! * (2*n+1)! / ((n-k+1)! * (k+1)! * (2*n-2*k+1)! * (2*k+1)!), {k,0,n}], {n,0,20}] (* Vaclav Kotesovec, Dec 16 2017 *)
Table[HypergeometricPFQ[{-n, -n-1/2, -n-1}, {3/2, 2}, -1], {n,0,25}] (* G. C. Greubel, Feb 11 2021 *)
-
S(n,k) = (n+k+1)!*(2*n+2*k+1)!/((n+1)!*(k+1)!*(2*n+1)!*(2*k+1)!);
a(n) = sum(k = 0, n, S(n-k,k)); \\ Michel Marcus, Dec 16 2017
-
[hypergeometric([-n, -n-1/2, -n-1], [3/2, 2], -1).simplify_hypergeometric() for n in (0..25)] # G. C. Greubel, Feb 11 2021
Showing 1-5 of 5 results.
Comments