A174119
Triangle T(n, k) = ((n-k)/6)*binomial(n-1, k-1)*binomial(2*n, 2*k) with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 14, 70, 14, 1, 1, 30, 420, 420, 30, 1, 1, 55, 1650, 4620, 1650, 55, 1, 1, 91, 5005, 30030, 30030, 5005, 91, 1, 1, 140, 12740, 140140, 300300, 140140, 12740, 140, 1, 1, 204, 28560, 519792, 2042040, 2042040, 519792, 28560, 204, 1, 1, 285, 58140, 1627920, 10581480, 19399380, 10581480, 1627920, 58140, 285, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 5, 5, 1;
1, 14, 70, 14, 1;
1, 30, 420, 420, 30, 1;
1, 55, 1650, 4620, 1650, 55, 1;
1, 91, 5005, 30030, 30030, 5005, 91, 1;
1, 140, 12740, 140140, 300300, 140140, 12740, 140, 1;
1, 204, 28560, 519792, 2042040, 2042040, 519792, 28560, 204, 1;
1, 285, 58140, 1627920, 10581480, 19399380, 10581480, 1627920, 58140, 285, 1;
-
T:= func< n,k | k eq 0 or k eq n select 1 else ((n-k)/6)*Binomial(n-1, k-1)*Binomial(2*n, 2*k) >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
-
(* First program *)
c[n_]:= If[n<2, 1, Product[j*(j-1)*(2*j-1)/6, {j, 2, n}]];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
(* Second program *)
T[n_, k_]:= If[k==0 || k==n, 1, ((n-k)/6)*Binomial[n-1, k-1]*Binomial[2*n, 2*k]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
-
def T(n,k): return 1 if (k==0 or k==n) else ((n-k)/6)*binomial(n-1, k-1)*binomial(2*n, 2*k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
A174116
Triangle T(n, k) = (n/2)*binomial(n-1, k-1)*binomial(n-1, k) with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 6, 18, 6, 1, 1, 10, 60, 60, 10, 1, 1, 15, 150, 300, 150, 15, 1, 1, 21, 315, 1050, 1050, 315, 21, 1, 1, 28, 588, 2940, 4900, 2940, 588, 28, 1, 1, 36, 1008, 7056, 17640, 17640, 7056, 1008, 36, 1, 1, 45, 1620, 15120, 52920, 79380, 52920, 15120, 1620, 45, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 3, 3, 1;
1, 6, 18, 6, 1;
1, 10, 60, 60, 10, 1;
1, 15, 150, 300, 150, 15, 1;
1, 21, 315, 1050, 1050, 315, 21, 1;
1, 28, 588, 2940, 4900, 2940, 588, 28, 1;
1, 36, 1008, 7056, 17640, 17640, 7056, 1008, 36, 1;
1, 45, 1620, 15120, 52920, 79380, 52920, 15120, 1620, 45, 1;
-
T:= func< n,k | k eq 0 or k eq n select 1 else (n/2)*Binomial(n-1, k-1)*Binomial(n-1, k) >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
-
(* First program *)
c[n_]:= If[n<2, 1, Product[Binomial[j,2], {j, 2, n}]];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
(* Second program *)
T[n_, k_]:= If[k==0 || k==n, 1, (n/2)*Binomial[n-1, k-1]*Binomial[n-1, k]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
-
def T(n,k): return 1 if (k==0 or k==n) else (n/2)*binomial(n-1, k-1)*binomial(n-1, k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
A174117
Triangle T(n, k) = (2*k/(k+1))*binomial(n-1, k)*binomial(n+1, k) with T(n, 0) = T(n, n) = 1, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 8, 8, 1, 1, 15, 40, 15, 1, 1, 24, 120, 120, 24, 1, 1, 35, 280, 525, 280, 35, 1, 1, 48, 560, 1680, 1680, 560, 48, 1, 1, 63, 1008, 4410, 7056, 4410, 1008, 63, 1, 1, 80, 1680, 10080, 23520, 23520, 10080, 1680, 80, 1, 1, 99, 2640, 20790, 66528, 97020, 66528, 20790, 2640, 99, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 3, 1;
1, 8, 8, 1;
1, 15, 40, 15, 1;
1, 24, 120, 120, 24, 1;
1, 35, 280, 525, 280, 35, 1;
1, 48, 560, 1680, 1680, 560, 48, 1;
1, 63, 1008, 4410, 7056, 4410, 1008, 63, 1;
1, 80, 1680, 10080, 23520, 23520, 10080, 1680, 80, 1;
1, 99, 2640, 20790, 66528, 97020, 66528, 20790, 2640, 99, 1;
-
T:= func< n,k | k eq 0 or k eq n select 1 else (2*k/(k+1))*Binomial(n-1, k)*Binomial(n+1, k) >;
[T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
-
(* First program *)
c[n_]:= If[n<2, 1, Product[i^2 -1, {i,2,n}]];
T[n_, k_]:= c[n]/(c[k]*c[n-k]);
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
(* Second program *)
T[n_, k_]:= If[k==0 || k==n, 1, (2*k/(k+1))*Binomial[n+1, k]*Binomial[n-1, k]];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
-
def T(n,k): return 1 if (k==0 or k==n) else (2*k/(k+1))*binomial(n-1, k)*binomial(n+1, k)
flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
A174125
Triangle T(n, k, q) = (q+1)*binomial(n, k)*(Pochhammer(q+1, n)/(Pochhammer(q+1, k)*Pochhammer(q+1, n-k))), with T(n, 0) = T(n, n) = 1, and q = 2, read by rows.
Original entry on oeis.org
1, 1, 1, 1, 8, 1, 1, 15, 15, 1, 1, 24, 45, 24, 1, 1, 35, 105, 105, 35, 1, 1, 48, 210, 336, 210, 48, 1, 1, 63, 378, 882, 882, 378, 63, 1, 1, 80, 630, 2016, 2940, 2016, 630, 80, 1, 1, 99, 990, 4158, 8316, 8316, 4158, 990, 99, 1, 1, 120, 1485, 7920, 20790, 28512, 20790, 7920, 1485, 120, 1
Offset: 0
Triangle begins as:
1;
1, 1;
1, 8, 1;
1, 15, 15, 1;
1, 24, 45, 24, 1;
1, 35, 105, 105, 35, 1;
1, 48, 210, 336, 210, 48, 1;
1, 63, 378, 882, 882, 378, 63, 1;
1, 80, 630, 2016, 2940, 2016, 630, 80, 1;
1, 99, 990, 4158, 8316, 8316, 4158, 990, 99, 1;
1, 120, 1485, 7920, 20790, 28512, 20790, 7920, 1485, 120, 1;
Cf.
A174124 (q=1), this sequence (q=2).
-
c:= func< n,q | n lt 2 select 1 else (&*[j*(j+q): j in [2..n]]) >;
T:= func< n,k,q | c(n, q)/(c(k, q)*c(n-k, q)) >;
[T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 11 2021
-
(* First program *)
c[n_, q_]:= If[n<2, 1, Product[i*(i+q), {i,2,n}]];
T[n_, m_, q_]:= c[n, q]/(c[k, q]*c[n-k, q]);
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten
(* Second program *)
T[n_, k_, q_]:= If[k==0 || k==n, 1, (q+1)*Binomial[n, k]*(Pochhammer[q+1, n]/(Pochhammer[q+1, k]*Pochhammer[q+1, n-k]))];
Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 11 2021 *)
-
def T(n,k,q): return 1 if (k==0 or k==n) else (q+1)*binomial(n, k)*(rising_factorial(q+1, n)/(rising_factorial(q+1, k)*rising_factorial(q+1, n-k)))
flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 11 2021
Showing 1-4 of 4 results.
Comments