cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A002697 a(n) = n*4^(n-1).

Original entry on oeis.org

0, 1, 8, 48, 256, 1280, 6144, 28672, 131072, 589824, 2621440, 11534336, 50331648, 218103808, 939524096, 4026531840, 17179869184, 73014444032, 309237645312, 1305670057984, 5497558138880, 23089744183296
Offset: 0

Views

Author

Keywords

Comments

Coefficient of x^(2n-2) in Chebyshev polynomial T(2n) is -a(n).
Let M_n be the n X n matrix m_(i,j) = 1 + 2*abs(i-j); then det(M_n) = (-1)^(n-1)*a(n-1). - Benoit Cloitre, May 28 2002
Number of subsequences 00 in all words of length n+1 on the alphabet {0,1,2,3}. Example: a(2)=8 because we have 000,001,002,003,100,200,300 (the other 57=A125145(3) words of length 3 have no subsequences 00). a(n) = Sum_{k=0..n} k*A128235(n+1, k). - Emeric Deutsch, Feb 27 2007
Let P(A) be the power set of an n-element set A. Then a(n) = the sum of the size of the symmetric difference of x and y for every subset {x,y} of P(A). - Ross La Haye, Dec 30 2007 (See the comment from Bernard Schott below.)
Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then remove (y,x) from B when (x,y) is in B and x != y and call this R35. Then a(n) = the sum of the size of the symmetric difference of x and y for every (x,y) of R35. [proposed edit of comment just above; by Ross La Haye]
The numbers in this sequence are the Wiener indices of the graphs of n-cubes (Boolean hypercubes). For example, the 3-cube is the graph of the standard cube whose Wiener index is 48. - K.V.Iyer, Feb 26 2009
From Gary W. Adamson, Sep 06 2009: (Start)
Starting (1, 8, 48, ...) = 4th binomial transform of [1, 4, 0, 0, 0, ...].
Equals the sum of terms in 2^n X 2^n semi-magic square arrays in which each row and column is composed of a binomial frequency of terms in the set (1, 3, 5, 7, ...).
The first few such arrays = [1] [1,3; 3,1]; /Q.
[1, 3, 5, 3;
3, 1, 3, 5;
5, 3, 1, 3;
3, 5, 3, 1]
(sum of terms = 48, with a binomial frequency of (1, 2, 1) as to (1, 3, 5) in each row and column)
[1, 3, 5, 3, 5, 7, 5, 3;
3, 1, 3, 5, 7, 5, 3, 5;
5, 3, 1, 3, 5, 3, 5, 7;
3, 5, 3, 1, 3, 5, 7, 5;
5, 7, 5, 3, 1, 3, 5, 3;
7, 5, 3, 5, 3, 1, 3, 5;
5, 3, 5, 7, 5, 3, 1, 3;
3, 5, 7, 5, 3, 5, 3, 1]
(sum of terms = 256, with each row and column composed of one 1, three 3's, three 5's, and one 7)
... (End)
Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then a(n) = the sum of the size of the intersection of x and y for every (x,y) of B. - Ross La Haye, Jan 05 2013
Following the last comment of Ross, A002699 is the similar sequence when "intersection" is replaced by "symmetric difference" and A212698 is the similar sequence when "intersection" is replaced by "union". - Bernard Schott, Jan 04 2013
Also, following the first comment of Ross, A082134 is the similar sequence when "symmetric difference" is replaced by "intersection" and A133224 is the similar sequence when "symmetric difference" is replaced by "union". - Bernard Schott, Jan 15 2013
Let [n] denote the set {1,2,3,...,n} and denote an n-permutation of the elements of [n] by p = p(1)p(2)p(3)...p(n), where p(i) is the i-th entry in the linear order given by p. Then (p(i),p(j)) is an inversion of p if i < j but p(i) > p(j). Denote the number of inversions of p by inv(p) and call a 2n-permutation p = p(1)p(2)...p(2n) 2-ordered if p(1) < p(3) < ... < p(2n-1) and p(2) < p(4) < ... < p(2n). Then Sum(inv(p)) = n*4^(n-1), where the sum is taken over all 2-ordered 2n-permutations of p. See Bona reference below. - Ross La Haye, Jan 21 2014
Sum over all peaks of Dyck paths of semilength n of the product of the x and y coordinates. - Alois P. Heinz, May 29 2015
Sum of the number of all edges over all j-dimensional subcubes of the boolean hypercube graph of dimension n, Q_n, for all j, so a(n) = Sum_{j=1..n} binomial(n,j)*2^(n-j) * j*2^(j-1). - Constantinos Kourouzides, Mar 24 2024

Examples

			From _Bernard Schott_, Jan 04 2013: (Start)
See the comment about intersection of X and Y.
If A={b,c}, then in P(A) we have:
{b}Inter{b}={b},
{b}Inter{b,c}={b},
{c}Inter{c}={c},
{c}Inter{b,c}={c},
{b,c}Inter{b}={b},
{b,c}Inter{c}={c},
{b,c}Inter{b,c}={b,c}
and : #{b}+ #{b}+ #{c}+ #{c}+ #{b}+ #{c}+ #{b,c} = 8 = 2*4^(2-1) = a(2).
The other intersections are empty.
(End)
		

References

  • Miklos Bona, Combinatorics of Permutations, Chapman and Hall/CRC, 2004, pp. 1, 43, 64.
  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 516.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n) = n*4^(n-1).
G.f.: x/(1-4x)^2. a(n+1) is the convolution of powers of 4 (A000302). - Wolfdieter Lang, May 16 2003
Third binomial transform of n. E.g.f.: x*exp(4x). - Paul Barry, Jul 22 2003
a(n) = Sum_{k=0..n} k*binomial(2*n, 2*k). - Benoit Cloitre, Jul 30 2003
For n>=0, a(n+1) = Sum_{i+j+k+l=n} binomial(2i, i)*binomial(2j, j)*binomial(2k, k)*binomial(2l, l). - Philippe Deléham, Jan 22 2004
a(n) = Sum_{k=0..n} 4^(n-k)*binomial(n-k+1, k)*binomial(1, (k+1)/2)*(1-(-1)^k)/2. - Paul Barry, Oct 15 2004
Sum_{n>0} 1/a(n) = 8*log(2) - 4*log(3). - Jaume Oliver Lafont, Sep 11 2009
a(0) = 0, a(n) = 4*a(n-1) + 4^(n-1). - Vincenzo Librandi, Dec 31 2010
a(n+1) is the convolution of A000984 with A002457. - Rui Duarte, Oct 08 2011
a(0) = 0, a(1) = 1, a(n) = 8*a(n-1) - 16*a(n-2). - Harvey P. Dale, Jan 18 2012
a(n) = A002699(n)/2 = A212698(n)/3. - Bernard Schott, Jan 04 2013
G.f.: W(0)*x/2 , where W(k) = 1 + 1/( 1 - 4*x*(k+2)/( 4*x*(k+2) + (k+1)/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 19 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(5/4). - Amiram Eldar, Oct 28 2020
a(n) = (1/2)*Sum_{k=0..n} k*binomial(2*n, k). Compare this with the formula of Benoit Cloitre above. - Wolfdieter Lang, Nov 12 2021
a(n) = (-1)^(n-1)*det(M(n)) for n > 0, where M(n) is the n X n symmetric Toeplitz matrix whose first row consists of 1, 3, ..., 2*n-1. - Stefano Spezia, Aug 04 2022

A053125 Triangle of coefficients of Chebyshev's U(n,2*x-1) polynomials (exponents of x in decreasing order).

Original entry on oeis.org

1, 4, -2, 16, -16, 3, 64, -96, 40, -4, 256, -512, 336, -80, 5, 1024, -2560, 2304, -896, 140, -6, 4096, -12288, 14080, -7680, 2016, -224, 7, 16384, -57344, 79872, -56320, 21120, -4032, 336, -8, 65536, -262144, 430080, -372736, 183040, -50688, 7392, -480, 9, 262144, -1179648, 2228224, -2293760, 1397760
Offset: 0

Views

Author

Keywords

Comments

A000302 (powers of 4), A002699, A002700 unsigned column sequences for m=0..2.
G.f. for row polynomials U(n,2*x-1) and row sums same as for A053124.
With offset 1 this is also the coefficient triangle of 2* U(2*n-1,x) expanded in decreasing powers of x. W. Lang, Mar 07 2007.

Examples

			{1}; {4,-2}; {16,-16,3}; {64,-96,40,-4}; {256,-512,336,-80,5};... E.g. fourth row (n=3) corresponds to polynomial U^{*}(3,m)=U(3,2*x-1)= 64*x^3-96*x^2+40*x-4.
		

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • Mathematica
    Reverse /@ CoefficientList[Table[ChebyshevU[n, 2 x - 1], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 04 2018 *)
    Reverse /@ CoefficientList[ChebyshevU[Range[0, 10], 2 x - 1], x] // Flatten (* Eric W. Weisstein, Apr 04 2018 *)

Formula

a(n, m) = A053124(n, n-m)= (4^(n-m))*A053123(n, m)= (4^(n-m))*((-1)^m)*binomial(2*n+1-m, m) if n >= m, else 0.
a(n, m) := -2*a(n-1, m-1)+4*a(n-1, m)-a(n-2, m-2), a(-2, m) := 0=: a(n, -2), a(-1, m) := 0=: a(n, -1), a(0, 0)=1, a(n, m)=0 if n
G.f. for m-th column (signed triangle): ((-x)^m)*Po(m+1, 4*x)/(1-4*x)^(m+1), with Po(k, x) := sum('binomial(k, 2*j+1)*x^j', 'j'=0..floor(k/2)).

A212698 Main transitions in systems of n particles with spin 3/2.

Original entry on oeis.org

3, 24, 144, 768, 3840, 18432, 86016, 393216, 1769472, 7864320, 34603008, 150994944, 654311424, 2818572288, 12079595520, 51539607552, 219043332096, 927712935936, 3917010173952, 16492674416640, 69269232549888, 290271069732864, 1213860837064704, 5066549580791808
Offset: 1

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Please refer to the general explanation in A212697. This particular sequence is obtained for base b=4, corresponding to spin S = (b-1)/2 = 3/2.
Let P(A) be the power set of an n-element set A and let B be the Cartesian product of P(A) with itself. Then a(n) = the sum of the size of the union of x and y for every (x,y) in B. [See Relation (28): U(n) in document of Ross La Haye in reference.] - Bernard Schott, Jan 04 2013
A002697 is the analogous sequence if "union" is replaced by "intersection" and A002699 is the analogous sequence if "union" is replaced by "symmetric difference". Here, X union Y and Y union X are considered as two distinct Cartesian products, if we want to consider that X Union Y = Y Union X are the same Cartesian product, see A133224. - Bernard Schott Jan 11 2013

Crossrefs

Cf. A001787, A212697, A212699, A212700, A212701, A212702, A212703, A212704 (for b = 2, 3, 5, 6, 7, 8, 9, 10).

Programs

  • Magma
    [3*n*4^(n-1): n in [1..30]]; // Vincenzo Librandi, Nov 29 2015
  • Mathematica
    Table[Sum[Binomial[n,i] i 3^i,{i,0,n}],{n,1,21}] (* Geoffrey Critzer, Aug 08 2013 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212698.txt", n, " ", mtrans(n, 4)))
    

Formula

a(n) = n*(b-1)*b^(n-1). For this sequence, set b=4.
a(n) = 3*n*4^(n-1).
a(n) = 3*A002697(n).
From Geoffrey Critzer, Aug 08 2013: (Start)
a(n) = Sum_{i>=0} binomial(n,i)*i*3^i.
E.g.f.: 3*x*exp(4*x). (End)
G.f.: 3*x/(4*x-1)^2. - Colin Barker, Nov 03 2014
From Elmo R. Oliveira, May 24 2025: (Start)
a(n) = 8*a(n-1) - 16*a(n-2) for n > 2.
a(n) = A008585(n)*A000302(n-1). (End)

A002700 Coefficients of Chebyshev polynomials: n*(2*n+1) * 4^(n-1).

Original entry on oeis.org

3, 40, 336, 2304, 14080, 79872, 430080, 2228224, 11206656, 55050240, 265289728, 1258291200, 5888802816, 27246198784, 124822487040, 566935683072, 2555505541120, 11441792876544, 50921132261376, 225399883694080, 992858999881728, 4354066045992960
Offset: 1

Keywords

References

  • Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A002699.

Programs

  • GAP
    List([1..30], n-> 4^(n-1)*n*(2*n+1)); # G. C. Greubel, Jul 23 2019
  • Magma
    [4^(n-1)*n*(2*n+1): n in [1..30]]; // G. C. Greubel, Jul 23 2019
    
  • Maple
    A002700:=-(3+4*z)/(4*z-1)**3; # Simon Plouffe in his 1992 dissertation.
  • Mathematica
    Table[n*(2*n+1)*2^(2*n-2),{n,1,30}] (* Vaclav Kotesovec, Jun 03 2014 *)
    LinearRecurrence[{12,-48,64},{3,40,336},30] (* Harvey P. Dale, May 17 2018 *)
  • PARI
    Vec(-x*(4*x+3)/(4*x-1)^3 + O(x^30)) \\ Colin Barker, Jun 15 2015
    
  • Sage
    [4^(n-1)*n*(2*n+1) for n in (1..30)] # G. C. Greubel, Jul 23 2019
    

Formula

a(n) = 12*a(n-1) - 48*a(n-2) + 64*a(n-3). - Colin Barker, Jun 15 2015
a(n) = 1/2*Sum_{k = 0..2*n} k^2*binomial(2*n,k). Cf. A002699. - Peter Bala, Apr 09 2017
From Amiram Eldar, Feb 17 2023: (Start)
Sum_{n>=1} 1/a(n) = 8 + 8*log(2) - 12*log(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 16*arctan(1/2) + 4*log(5/4) - 8. (End)

A254632 Triangle read by rows, T(n, k) = 4^n*[x^k]hypergeometric([3/2, -n], [3], -x), n>=0, 0<=k<=n.

Original entry on oeis.org

1, 4, 2, 16, 16, 5, 64, 96, 60, 14, 256, 512, 480, 224, 42, 1024, 2560, 3200, 2240, 840, 132, 4096, 12288, 19200, 17920, 10080, 3168, 429, 16384, 57344, 107520, 125440, 94080, 44352, 12012, 1430, 65536, 262144, 573440, 802816, 752640, 473088, 192192, 45760, 4862
Offset: 0

Author

Peter Luschny, Feb 03 2015

Keywords

Examples

			[   1]
[   4,     2]
[  16,    16,     5]
[  64,    96,    60,    14]
[ 256,   512,   480,   224,    42]
[1024,  2560,  3200,  2240,   840,  132]
[4096, 12288, 19200, 17920, 10080, 3168, 429]
		

Crossrefs

Programs

  • Maple
    h := n -> simplify(hypergeom([3/2, -n], [3], -x)):
    seq(print(seq(4^n*coeff(h(n), x, k), k=0..n)), n=0..9);
  • Mathematica
    T[n_, k_] := 4^(n-k) Binomial[n, k] CatalanNumber[k+1];
    Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 28 2019 *)
  • Sage
    A254632 = lambda n,k: (4)^(n-k)*binomial(n,k)*catalan_number(k+1)
    for n in range(7): [A254632(n,k) for k in (0..n)]

Formula

T(n,0) = A000302(n).
T(n,n) = A000108(n+1).
T(n,1) = A002699(n) for n>=1.
T(n,n-1) = A128650(n+2) for n>=1.
T(2*n,n) = A254633(n).
T(n,k) = 4^(n-k)*C(n,k)*Catalan(k+1).
sum(k=0..n, T(n,k)) = A025230(n+2).

A328000 a(n) = Sum_{k=0..n}(k!*(n - k)!)/(floor(k/2)!*floor((n - k)/2)!)^2.

Original entry on oeis.org

1, 2, 5, 16, 28, 96, 160, 512, 896, 2560, 4864, 12288, 25600, 57344, 131072, 262144, 655360, 1179648, 3211264, 5242880, 15466496, 23068672, 73400320, 100663296, 343932928, 436207616, 1593835520, 1879048192, 7314866176, 8053063680, 33285996544, 34359738368
Offset: 0

Author

Peter Luschny, Oct 01 2019

Keywords

Crossrefs

Programs

  • Magma
    [IsOdd(n) select 2^(n - 1)*(n + 1) else 2^(n - 5)*(n*(n + 2) + 32):n in [0..30]]; // Marius A. Burtea, Feb 05 2020
  • Maple
    swing := n -> n!/iquo(n,2)!^2: a := n -> add(swing(k)*swing(n-k), k=0..n):
    seq(`if`(irem(n, 2) = 0, 2 + n*(n + 2)/16, n + 1)*2^(n - 1), n=0..31);
  • Mathematica
    A328000List[len_] := CoefficientList[Series[(4 x^2 - x - 1)^2 / (1 - 4 x^2)^3 , {x, 0, len}], x]; A328000List[31]
    LinearRecurrence[{0,12,0,-48,0,64},{1,2,5,16,28,96},40] (* Harvey P. Dale, Jun 19 2022 *)
  • PARI
    x='x + O('x^32);
    Vec(serlaplace(((3*x + 8)*sinh(2*x) + (2*x^2 + 16*(x + 1))*cosh(2*x))/16))
    
  • PARI
    Vec((1 + x - 4*x^2)^2 / ((1 - 2*x)^3*(1 + 2*x)^3) + O(x^30)) \\ Colin Barker, Feb 05 2020
    

Formula

a(n) = Sum_{k=0..n} s(k)*s(n-k) where s(n) = A056040(n).
a(n) = [x^n] (4*x^2 - x - 1)^2 / (1 - 4*x^2)^3.
a(n) = 2^(n - 5)*(n*(n + 2) + 32) if n even else 2^(n - 1)*(n + 1).
a(2*n) = A327999(n).
a(2*n-1) = A002699(n), (with a(-1) = 0).
a(2^n-1) = 2^(2^n - 2 + n) for n >= 1.
2*a(2*n)/2^n = A081908(n+1).
4*a(2*n)/4^n = A145018(n+1).
2*a(2*n-1)/4^n = A001477(n).
From Stefano Spezia, Oct 19 2019: (Start)
a(n) = n! [x^n] (1/32)*exp(-2*x)*(8 + exp(4*x)*(8 + x)*(3 + 2*x) + x*(13 + 2*x)).
a(n) = 12*a(n-2) - 48*a(n-4) + 64*a(n-6) for n > 5. (End)

A303602 a(n) = Sum_{k = 0..n} k*binomial(2*n+1, k).

Original entry on oeis.org

0, 3, 25, 154, 837, 4246, 20618, 97140, 447661, 2028478, 9070110, 40122028, 175913250, 765561564, 3310623412, 14238676712, 60949133949, 259809601870, 1103420316566, 4670886541308, 19714134528598, 82985455688276, 348481959315660, 1460179866076504, 6106070639175122
Offset: 0

Author

Bruno Berselli, May 09 2018

Keywords

Comments

Second bisection of A185251; the first bisection is A002699.
The terms are not congruent to 5 (mod 6).

Programs

  • Maple
    seq(add(k*binomial(2*n+1,k),k=0..n),n=0..24); # Paolo P. Lava, May 10 2018
  • Mathematica
    Table[Sum[k Binomial[2 n + 1, k], {k, 0, n}], {n, 0, 30}]
    CoefficientList[Series[(1 + 4*x - Sqrt[1 - 4*x]) / (2*(1 - 4*x)^2), {x, 0, 25}], x] (* Vaclav Kotesovec, May 10 2018 *)
  • PARI
    a(n)=(2*n+1)*(4^n-binomial(2*n,n))/2 \\ Charles R Greathouse IV, Oct 23 2023
  • Sage
    [(2*n+1)*(4^n-binomial(2*n,n))/2 for n in (0..30)]
    

Formula

E.g.f.: ((1 + 8*x)*exp(2*x) - (1 + 4*x)*I_0(2*x) - 4*x*I_1(2*x))*exp(2*x)/2, where I_m(.) is the modified Bessel function of the first kind.
From Vaclav Kotesovec, May 10 2018: (Start)
G.f.: (1 + 4*x - sqrt(1 - 4*x)) / (2*(1 - 4*x)^2).
D-finite with recurrence: n*(2*n-1)*a(n) = 2*(2*n+1)*(4*n-3)*a(n-1) - 8*(2*n-1)*(2*n+1)*a(n-2). (End)
a(n) = (2*n + 1)*(4^n - binomial(2*n, n))/2.
a(n+1) - 4*a(n) = A164991(2*n+3).

A375853 Triangle read by rows: T(n, k) = k*(n - k)*binomial(2*n+2, 2*k+1)/(4*n + 2) for 1 <= k <= n-1.

Original entry on oeis.org

2, 8, 8, 20, 56, 20, 40, 216, 216, 40, 70, 616, 1188, 616, 70, 112, 1456, 4576, 4576, 1456, 112, 168, 3024, 14040, 22880, 14040, 3024, 168, 240, 5712, 36720, 88400, 88400, 36720, 5712, 240, 330, 10032, 85272, 284240, 419900, 284240, 85272, 10032, 330
Offset: 2

Author

Mingjian Ding, Aug 31 2024

Keywords

Comments

The T(n, k) are the coefficients of the minuscule polynomials of type A. They are the Wiener index of a minuscule lattice of type A, i.e., the Hasse diagram of the poset of order ideals in a k X (n - k) rectangle.

Examples

			Triangle begins:
  n\k  1    2     3    4   5
  2:   2;
  3:   8,   8;
  4:  20,  56,   20;
  5:  40, 216,  216,  40;
  6:  70, 616, 1188, 616, 70;
 ...
		

Crossrefs

Column 1 and main diagonal are A007290(n+1).
Row sums are A002699(n-1).
Half the sums of the gamma coefficients are A376072(n).

Programs

  • Maple
    Trow := n -> seq(1/(4*n+2)*k*(n-k)*binomial(2*n+2, 2*k+1), k = 1..n-1):
    for n from 2 to 10 do Trow(n) od;
    # Alternatively, using the generating function of the row polynomials:
    rgf := (n, x) -> ((sqrt(x) - 1)^(2*n)*(2*n*sqrt(x) + x + 1) - (sqrt(x) + 1)^(2*n)*(-2*n*sqrt(x) + x + 1))/(16*sqrt(x)):
    T := (n, k) -> coeff(expand(rgf(n, x)), x, k):
    seq(print(seq(T(n, k), k = 1..n - 1)), n = 2..8): # Peter Luschny, Sep 22 2024
  • Mathematica
    Flatten@Table[k*(n - k)*Binomial[2*n + 2, 2*k + 1]/(4*n + 2), {n, 2, 10}, {k, n - 1}] (* Zhining Yang, Sep 18 2024 *)
  • PARI
    T(n,k) = k*(n-k)*binomial(2*n+2,2*k+1)/(4*n+2) \\ Andrew Howroyd, Sep 01 2024

Formula

Sum_{k>=0} T(n, k) = A002699(n-1) (conjectured by Bourn and Erickson).
G.f.: T_n(x) = Sum_{k>=0} T(n, k)*x^k = (1 - x)^{2*n}*Sum_{k>=0}Sum_{alpha, beta} EMD_k(alpha, beta)*x^k, where EMD_k is the Earth Mover's Distance on (alpha, beta), and alpha, beta are the elements of composition of k into n parts.
T_n(x^2) = (n + 1)/8*((1 + x)^(2*n) + (1 - x)^(2*n)) - 1/(16*x)*((1 + x)^(2*n + 2) - (1 - x)^(2*n + 2)). (Proposition 3.1, arXiv:2308.16782)
Showing 1-8 of 8 results.