A002697
a(n) = n*4^(n-1).
Original entry on oeis.org
0, 1, 8, 48, 256, 1280, 6144, 28672, 131072, 589824, 2621440, 11534336, 50331648, 218103808, 939524096, 4026531840, 17179869184, 73014444032, 309237645312, 1305670057984, 5497558138880, 23089744183296
Offset: 0
From _Bernard Schott_, Jan 04 2013: (Start)
See the comment about intersection of X and Y.
If A={b,c}, then in P(A) we have:
{b}Inter{b}={b},
{b}Inter{b,c}={b},
{c}Inter{c}={c},
{c}Inter{b,c}={c},
{b,c}Inter{b}={b},
{b,c}Inter{c}={c},
{b,c}Inter{b,c}={b,c}
and : #{b}+ #{b}+ #{c}+ #{c}+ #{b}+ #{c}+ #{b,c} = 8 = 2*4^(2-1) = a(2).
The other intersections are empty.
(End)
- Miklos Bona, Combinatorics of Permutations, Chapman and Hall/CRC, 2004, pp. 1, 43, 64.
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 516.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Danny Rorabaugh, Table of n, a(n) for n = 0..1000
- F. Ellermann, Illustration of binomial transforms
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, arXiv:1603.01040 [math.CO], 2016.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 414
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Constantinos Kourouzides, A double counting argument on the hypercube graph
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Hypercube Graph
- Eric Weisstein's World of Mathematics, Wiener Index
- Index entries for linear recurrences with constant coefficients, signature (8,-16).
Cf.
A000051,
A000302,
A000984,
A001792,
A002457,
A002699,
A027656,
A038231,
A082134,
A083672,
A125145,
A128235,
A133224,
A212698.
-
A002697:=1/(4*z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
A002697:=n->n*4^(n-1): seq(A002697(n), n=0..30); # Wesley Ivan Hurt, Mar 30 2014
-
Table[n 4^(n - 1), {n, 0, 30}] (* Harvey P. Dale, Jan 18 2012 *)
LinearRecurrence[{8, -16}, {0, 1}, 30] (* Harvey P. Dale, Jan 18 2012 *)
CoefficientList[Series[x/(1 - 4 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
-
a(n)=if(n<0,0,n*4^(n-1))
-
[n*4^(n-1) for n in range(22)] # Danny Rorabaugh, Mar 27 2015
A053125
Triangle of coefficients of Chebyshev's U(n,2*x-1) polynomials (exponents of x in decreasing order).
Original entry on oeis.org
1, 4, -2, 16, -16, 3, 64, -96, 40, -4, 256, -512, 336, -80, 5, 1024, -2560, 2304, -896, 140, -6, 4096, -12288, 14080, -7680, 2016, -224, 7, 16384, -57344, 79872, -56320, 21120, -4032, 336, -8, 65536, -262144, 430080, -372736, 183040, -50688, 7392, -480, 9, 262144, -1179648, 2228224, -2293760, 1397760
Offset: 0
{1}; {4,-2}; {16,-16,3}; {64,-96,40,-4}; {256,-512,336,-80,5};... E.g. fourth row (n=3) corresponds to polynomial U^{*}(3,m)=U(3,2*x-1)= 64*x^3-96*x^2+40*x-4.
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
-
Reverse /@ CoefficientList[Table[ChebyshevU[n, 2 x - 1], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 04 2018 *)
Reverse /@ CoefficientList[ChebyshevU[Range[0, 10], 2 x - 1], x] // Flatten (* Eric W. Weisstein, Apr 04 2018 *)
A212698
Main transitions in systems of n particles with spin 3/2.
Original entry on oeis.org
3, 24, 144, 768, 3840, 18432, 86016, 393216, 1769472, 7864320, 34603008, 150994944, 654311424, 2818572288, 12079595520, 51539607552, 219043332096, 927712935936, 3917010173952, 16492674416640, 69269232549888, 290271069732864, 1213860837064704, 5066549580791808
Offset: 1
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (8,-16).
Cf.
A001787,
A212697,
A212699,
A212700,
A212701,
A212702,
A212703,
A212704 (for b = 2, 3, 5, 6, 7, 8, 9, 10).
-
[3*n*4^(n-1): n in [1..30]]; // Vincenzo Librandi, Nov 29 2015
-
Table[Sum[Binomial[n,i] i 3^i,{i,0,n}],{n,1,21}] (* Geoffrey Critzer, Aug 08 2013 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212698.txt", n, " ", mtrans(n, 4)))
A002700
Coefficients of Chebyshev polynomials: n*(2*n+1) * 4^(n-1).
Original entry on oeis.org
3, 40, 336, 2304, 14080, 79872, 430080, 2228224, 11206656, 55050240, 265289728, 1258291200, 5888802816, 27246198784, 124822487040, 566935683072, 2555505541120, 11441792876544, 50921132261376, 225399883694080, 992858999881728, 4354066045992960
Offset: 1
- Cornelius Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Colin Barker, Table of n, a(n) for n = 1..1000
- Cornelius Lanczos, Applied Analysis. (Annotated scans of selected pages)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Index entries for linear recurrences with constant coefficients, signature (12,-48,64).
- Index entries for sequences related to Chebyshev polynomials.
-
List([1..30], n-> 4^(n-1)*n*(2*n+1)); # G. C. Greubel, Jul 23 2019
-
[4^(n-1)*n*(2*n+1): n in [1..30]]; // G. C. Greubel, Jul 23 2019
-
A002700:=-(3+4*z)/(4*z-1)**3; # Simon Plouffe in his 1992 dissertation.
-
Table[n*(2*n+1)*2^(2*n-2),{n,1,30}] (* Vaclav Kotesovec, Jun 03 2014 *)
LinearRecurrence[{12,-48,64},{3,40,336},30] (* Harvey P. Dale, May 17 2018 *)
-
Vec(-x*(4*x+3)/(4*x-1)^3 + O(x^30)) \\ Colin Barker, Jun 15 2015
-
[4^(n-1)*n*(2*n+1) for n in (1..30)] # G. C. Greubel, Jul 23 2019
A254632
Triangle read by rows, T(n, k) = 4^n*[x^k]hypergeometric([3/2, -n], [3], -x), n>=0, 0<=k<=n.
Original entry on oeis.org
1, 4, 2, 16, 16, 5, 64, 96, 60, 14, 256, 512, 480, 224, 42, 1024, 2560, 3200, 2240, 840, 132, 4096, 12288, 19200, 17920, 10080, 3168, 429, 16384, 57344, 107520, 125440, 94080, 44352, 12012, 1430, 65536, 262144, 573440, 802816, 752640, 473088, 192192, 45760, 4862
Offset: 0
[ 1]
[ 4, 2]
[ 16, 16, 5]
[ 64, 96, 60, 14]
[ 256, 512, 480, 224, 42]
[1024, 2560, 3200, 2240, 840, 132]
[4096, 12288, 19200, 17920, 10080, 3168, 429]
-
h := n -> simplify(hypergeom([3/2, -n], [3], -x)):
seq(print(seq(4^n*coeff(h(n), x, k), k=0..n)), n=0..9);
-
T[n_, k_] := 4^(n-k) Binomial[n, k] CatalanNumber[k+1];
Table[T[n, k], {n, 0, 8}, {k, 0, n}] (* Jean-François Alcover, Jun 28 2019 *)
-
A254632 = lambda n,k: (4)^(n-k)*binomial(n,k)*catalan_number(k+1)
for n in range(7): [A254632(n,k) for k in (0..n)]
A328000
a(n) = Sum_{k=0..n}(k!*(n - k)!)/(floor(k/2)!*floor((n - k)/2)!)^2.
Original entry on oeis.org
1, 2, 5, 16, 28, 96, 160, 512, 896, 2560, 4864, 12288, 25600, 57344, 131072, 262144, 655360, 1179648, 3211264, 5242880, 15466496, 23068672, 73400320, 100663296, 343932928, 436207616, 1593835520, 1879048192, 7314866176, 8053063680, 33285996544, 34359738368
Offset: 0
-
[IsOdd(n) select 2^(n - 1)*(n + 1) else 2^(n - 5)*(n*(n + 2) + 32):n in [0..30]]; // Marius A. Burtea, Feb 05 2020
-
swing := n -> n!/iquo(n,2)!^2: a := n -> add(swing(k)*swing(n-k), k=0..n):
seq(`if`(irem(n, 2) = 0, 2 + n*(n + 2)/16, n + 1)*2^(n - 1), n=0..31);
-
A328000List[len_] := CoefficientList[Series[(4 x^2 - x - 1)^2 / (1 - 4 x^2)^3 , {x, 0, len}], x]; A328000List[31]
LinearRecurrence[{0,12,0,-48,0,64},{1,2,5,16,28,96},40] (* Harvey P. Dale, Jun 19 2022 *)
-
x='x + O('x^32);
Vec(serlaplace(((3*x + 8)*sinh(2*x) + (2*x^2 + 16*(x + 1))*cosh(2*x))/16))
-
Vec((1 + x - 4*x^2)^2 / ((1 - 2*x)^3*(1 + 2*x)^3) + O(x^30)) \\ Colin Barker, Feb 05 2020
A303602
a(n) = Sum_{k = 0..n} k*binomial(2*n+1, k).
Original entry on oeis.org
0, 3, 25, 154, 837, 4246, 20618, 97140, 447661, 2028478, 9070110, 40122028, 175913250, 765561564, 3310623412, 14238676712, 60949133949, 259809601870, 1103420316566, 4670886541308, 19714134528598, 82985455688276, 348481959315660, 1460179866076504, 6106070639175122
Offset: 0
-
seq(add(k*binomial(2*n+1,k),k=0..n),n=0..24); # Paolo P. Lava, May 10 2018
-
Table[Sum[k Binomial[2 n + 1, k], {k, 0, n}], {n, 0, 30}]
CoefficientList[Series[(1 + 4*x - Sqrt[1 - 4*x]) / (2*(1 - 4*x)^2), {x, 0, 25}], x] (* Vaclav Kotesovec, May 10 2018 *)
-
a(n)=(2*n+1)*(4^n-binomial(2*n,n))/2 \\ Charles R Greathouse IV, Oct 23 2023
-
[(2*n+1)*(4^n-binomial(2*n,n))/2 for n in (0..30)]
A375853
Triangle read by rows: T(n, k) = k*(n - k)*binomial(2*n+2, 2*k+1)/(4*n + 2) for 1 <= k <= n-1.
Original entry on oeis.org
2, 8, 8, 20, 56, 20, 40, 216, 216, 40, 70, 616, 1188, 616, 70, 112, 1456, 4576, 4576, 1456, 112, 168, 3024, 14040, 22880, 14040, 3024, 168, 240, 5712, 36720, 88400, 88400, 36720, 5712, 240, 330, 10032, 85272, 284240, 419900, 284240, 85272, 10032, 330
Offset: 2
Triangle begins:
n\k 1 2 3 4 5
2: 2;
3: 8, 8;
4: 20, 56, 20;
5: 40, 216, 216, 40;
6: 70, 616, 1188, 616, 70;
...
- Rebecca Bourn and Jeb F. Willenbring, Expected value of the one-dimensional earth mover's distance, Algebr. Stat. 11 (2020), no. 1, 53-78.
- Rebecca Bourn and William Q. Erickson, Proof of a conjecture of Bourn and Willenbring concerning a family of palindromic polynomials, arXiv:2307.02652 [math.CO], 2023.
- Colin Defant, Valentin Féray, Philippe Nadeau, and Nathan Williams, Wiener indices of minuscule lattices, Electron. J. Combin. 31 (2024), no.1, Paper No. 1.41, 23 pp.
- Ming-Jian Ding and Jiang Zeng, Some new results on minuscule polynomial of type A, arXiv:2308.16782 [math.CO], 2023.
- Eric Weisstein's World of Mathematics, Wiener Index.
Column 1 and main diagonal are
A007290(n+1).
Half the sums of the gamma coefficients are
A376072(n).
-
Trow := n -> seq(1/(4*n+2)*k*(n-k)*binomial(2*n+2, 2*k+1), k = 1..n-1):
for n from 2 to 10 do Trow(n) od;
# Alternatively, using the generating function of the row polynomials:
rgf := (n, x) -> ((sqrt(x) - 1)^(2*n)*(2*n*sqrt(x) + x + 1) - (sqrt(x) + 1)^(2*n)*(-2*n*sqrt(x) + x + 1))/(16*sqrt(x)):
T := (n, k) -> coeff(expand(rgf(n, x)), x, k):
seq(print(seq(T(n, k), k = 1..n - 1)), n = 2..8): # Peter Luschny, Sep 22 2024
-
Flatten@Table[k*(n - k)*Binomial[2*n + 2, 2*k + 1]/(4*n + 2), {n, 2, 10}, {k, n - 1}] (* Zhining Yang, Sep 18 2024 *)
-
T(n,k) = k*(n-k)*binomial(2*n+2,2*k+1)/(4*n+2) \\ Andrew Howroyd, Sep 01 2024
Showing 1-8 of 8 results.
Comments