A053125 Triangle of coefficients of Chebyshev's U(n,2*x-1) polynomials (exponents of x in decreasing order).
1, 4, -2, 16, -16, 3, 64, -96, 40, -4, 256, -512, 336, -80, 5, 1024, -2560, 2304, -896, 140, -6, 4096, -12288, 14080, -7680, 2016, -224, 7, 16384, -57344, 79872, -56320, 21120, -4032, 336, -8, 65536, -262144, 430080, -372736, 183040, -50688, 7392, -480, 9, 262144, -1179648, 2228224, -2293760, 1397760
Offset: 0
Examples
{1}; {4,-2}; {16,-16,3}; {64,-96,40,-4}; {256,-512,336,-80,5};... E.g. fourth row (n=3) corresponds to polynomial U^{*}(3,m)=U(3,2*x-1)= 64*x^3-96*x^2+40*x-4.
References
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
Links
- T. D. Noe, Rows n=0..50 of triangle, flattened
- W. Lang, First rows and related triangles .
- Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the Second Kind
- Index entries for sequences related to Chebyshev polynomials.
Programs
-
Mathematica
Reverse /@ CoefficientList[Table[ChebyshevU[n, 2 x - 1], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 04 2018 *) Reverse /@ CoefficientList[ChebyshevU[Range[0, 10], 2 x - 1], x] // Flatten (* Eric W. Weisstein, Apr 04 2018 *)
Formula
a(n, m) = A053124(n, n-m)= (4^(n-m))*A053123(n, m)= (4^(n-m))*((-1)^m)*binomial(2*n+1-m, m) if n >= m, else 0.
a(n, m) := -2*a(n-1, m-1)+4*a(n-1, m)-a(n-2, m-2), a(-2, m) := 0=: a(n, -2), a(-1, m) := 0=: a(n, -1), a(0, 0)=1, a(n, m)=0 if n
G.f. for m-th column (signed triangle): ((-x)^m)*Po(m+1, 4*x)/(1-4*x)^(m+1), with Po(k, x) := sum('binomial(k, 2*j+1)*x^j', 'j'=0..floor(k/2)).
A229694 T(n,k) = number of defective 3-colorings of an n X k 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.
0, 0, 0, 1, 3, 0, 3, 43, 40, 0, 12, 245, 626, 336, 0, 40, 1171, 5077, 6732, 2304, 0, 120, 5077, 35825, 80757, 62856, 14080, 0, 336, 20691, 230383, 848937, 1125333, 539568, 79872, 0, 896, 80757, 1400413, 8186713, 17724789, 14461173, 4377888, 430080, 0
Offset: 1
Examples
Some solutions for n=3, k=4: 0 1 2 1 0 1 0 2 0 1 0 2 0 0 1 2 0 1 0 2 0 1 0 2 0 2 0 2 0 2 1 0 1 0 0 1 0 2 1 1 1 2 1 1 2 1 2 0 2 2 1 2 2 1 2 0 1 0 2 2 Table starts .0......0........1..........3...........12............40.............120 .0......3.......43........245.........1171..........5077...........20691 .0.....40......626.......5077........35825........230383.........1400413 .0....336.....6732......80757.......848937.......8186713........75035643 .0...2304....62856....1125333.....17724789.....258006388......3583403667 .0..14080...539568...14461173....342532665....7551515197....159377253183 .0..79872..4377888..175867605...6279934941..210095323918...6749642728251 .0.430080.34105536.2054728053.110801828529.5632122625852.275739382892979
Links
- R. H. Hardin, Table of n, a(n) for n = 1..286
Formula
Empirical for column k:
k=1: a(n) = a(n-1).
k=2: a(n) = 12*a(n-1) - 48*a(n-2) + 64*a(n-3).
k=3: a(n) = 18*a(n-1) - 108*a(n-2) + 216*a(n-3) for n > 4.
k=4: a(n) = 27*a(n-1) - 243*a(n-2) + 729*a(n-3) for n > 4.
k=5: [order 6] for n > 7.
k=6: [order 9] for n > 11.
k=7: [order 12] for n > 14.
Empirical for row n:
n=1: a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) for n > 6.
n=2: a(n) = 9*a(n-1) - 27*a(n-2) + 27*a(n-3) for n > 6.
n=3: a(n) = 15*a(n-1) - 81*a(n-2) + 185*a(n-3) - 162*a(n-4) + 60*a(n-5) - 8*a(n-6) for n > 10.
n=4: [order 9] for n > 17.
n=5: [order 21] for n > 27.
n=6: [order 29] for n > 39.
n=7: [order 86] for n > 94.
A225467 Triangle read by rows, T(n, k) = 4^k*S_4(n, k) where S_m(n, k) are the Stirling-Frobenius subset numbers of order m; n >= 0, k >= 0.
1, 3, 4, 9, 40, 16, 27, 316, 336, 64, 81, 2320, 4960, 2304, 256, 243, 16564, 63840, 54400, 14080, 1024, 729, 116920, 768496, 1071360, 485120, 79872, 4096, 2187, 821356, 8921136, 19144384, 13502720, 3777536, 430080, 16384, 6561, 5758240, 101417920, 322850304
Offset: 0
Comments
The definition of the Stirling-Frobenius subset numbers of order m is in A225468.
This is the Sheffer triangle (exp(3*x), exp(4*x) - 1). See also the P. Bala link under A225469, the Sheffer triangle (exp(3*x),(1/4)*(exp(4*x) - 1)), which is named there exponential Riordan array S_{(4,0,3)}. - Wolfdieter Lang, Apr 13 2017
Examples
[n\k][ 0, 1, 2, 3, 4, 5, 6, 7] [0] 1, [1] 3, 4, [2] 9, 40, 16, [3] 27, 316, 336, 64, [4] 81, 2320, 4960, 2304, 256, [5] 243, 16564, 63840, 54400, 14080, 1024, [6] 729, 116920, 768496, 1071360, 485120, 79872, 4096, [7] 2187, 821356, 8921136, 19144384, 13502720, 3777536, 430080, 16384. ... From _Wolfdieter Lang_, Aug 11 2017: (Start) Recurrence (see the Maple program): T(4, 2) = 4*T(3, 1) + (4*2+3)*T(3, 2) = 4*316 + 11*336 = 4960. Boas-Buck recurrence for column k = 2, and n = 4: T(4, 2) = (1/2)*(2*(6 + 4*2)*T(3, 2) + 2*6*(-4)^2*Bernoulli(2)*T(2, 2)) = (1/2)*(28*336 + 12*16*(1/6)*16) = 4960. (End)
Links
- Vincenzo Librandi, Rows n = 0..50, flattened
- Paweł Hitczenko, A class of polynomial recurrences resulting in (n/log n, n/log^2 n)-asymptotic normality, arXiv:2403.03422 [math.CO], 2024. See p. 9.
- Peter Luschny, Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
Crossrefs
Programs
-
Maple
SF_SS := proc(n, k, m) option remember; if n = 0 and k = 0 then return(1) fi; if k > n or k < 0 then return(0) fi; m*SF_SS(n-1, k-1, m) + (m*(k+1)-1)*SF_SS(n-1, k, m) end: seq(print(seq(SF_SS(n, k, 4), k=0..n)), n=0..5);
-
Mathematica
EulerianNumber[n_, k_, m_] := EulerianNumber[n, k, m] = (If[ n == 0, Return[If[k == 0, 1, 0]]]; Return[(m*(n-k)+m-1)*EulerianNumber[n-1, k-1, m] + (m*k+1)*EulerianNumber[n-1, k, m]]); SFSS[n_, k_, m_] := Sum[ EulerianNumber[n, j, m]*Binomial[j, n-k], {j, 0, n}]/k!; Table[ SFSS[n, k, 4], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 29 2013, translated from Sage *)
-
PARI
T(n, k) = sum(m=0, k, binomial(k, m)*(-1)^(m - k)*((3 + 4*m)^n)/k!); for(n = 0, 10, for(k=0, n, print1(T(n, k),", ");); print();) \\ Indranil Ghosh, Apr 13 2017
-
Python
from sympy import binomial, factorial def T(n, k): return sum(binomial(k, m)*(-1)**(m - k)*((3 + 4*m)**n)//factorial(k) for m in range(k + 1)) for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 13 2017
-
Sage
@CachedFunction def EulerianNumber(n, k, m) : if n == 0: return 1 if k == 0 else 0 return (m*(n-k)+m-1)*EulerianNumber(n-1,k-1,m)+(m*k+1)*EulerianNumber(n-1,k,m) def SF_SS(n, k, m): return add(EulerianNumber(n,j,m)*binomial(j,n-k) for j in (0..n))/factorial(k) def A225467(n): return SF_SS(n, k, 4)
Formula
T(n, k) = (1/k!)*sum_{j=0..n} binomial(j, n-k)*A_4(n, j) where A_m(n, j) are the generalized Eulerian numbers A225118.
For a recurrence see the Maple program.
From Wolfdieter Lang, Apr 13 2017: (Start)
T(n, k) = Sum_{m=0..k} binomial(k,m)*(-1)^(m-k)*((3+4*m)^n)/k!, 0 <= k <= n.
In terms of Stirling2 = A048993: T(n, m) = Sum_{k=0..n} binomial(n, k)* 3^(n-k)*4^k*Stirling2(k, m), 0 <= m <= n.
E.g.f. exp(3*z)*exp(x*(exp(4*z) - 1)) (Sheffer property).
E.g.f. column k: exp(3*x)*((exp(4*x) - 1)^k)/k!, k >= 0.
O.g.f. column k: (4*x)^k/Product_{j=0..k} (1 - (3 + 4*j)*x), k >= 0.
(End)
Boas-Buck recurrence for column sequence k: T(n, k) = (1/(n - k))*((n/2)*(6 + 4*k)*T(n-1, k) + k*Sum_{p=k..n-2} binomial(n, p)*(-4)^(n-p)*Bernoulli(n-p)*T(p, k)), for n > k >= 0, with input T(k, k) = 4^k. See a comment and references in A282629. An example is given below. - Wolfdieter Lang, Aug 11 2017
A054322 Fourth unsigned column of Lanczos triangle A053125 (decreasing powers).
4, 80, 896, 7680, 56320, 372736, 2293760, 13369344, 74711040, 403701760, 2122317824, 10905190400, 54962159616, 272461987840, 1331439861760, 6425271074816, 30666066493440, 144929376436224, 678948430151680
Offset: 0
References
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (16,-96,256,-256).
Programs
-
GAP
List([0..20], n-> 4^n*Binomial(2*n+4, 3)); # G. C. Greubel, Jul 22 2019
-
Magma
[4^n*Binomial(2*n+4, 3): n in [0..20]]; // G. C. Greubel, Jul 22 2019
-
Mathematica
Table[4^n*Binomial[2*n+4, 3], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *) LinearRecurrence[{16,-96,256,-256},{4,80,896,7680},20] (* Harvey P. Dale, Mar 27 2023 *)
-
PARI
vector(20, n, n--; 4^n*binomial(2*n+4, 3)) \\ G. C. Greubel, Jul 22 2019
-
Sage
[4^n*binomial(2*n+4, 3) for n in (0..20)] # G. C. Greubel, Jul 22 2019
Formula
G.f.: 4*(1+4*x)/(1-4*x)^4.
E.g.f.: (4/3)*(3 +48*x +120*x^2 +64*x^3)*exp(4*x). - G. C. Greubel, Jul 22 2019
A225478 Triangle read by rows, 4^k*s_4(n, k) where s_m(n, k) are the Stirling-Frobenius cycle numbers of order m; n >= 0, k >= 0.
1, 3, 4, 21, 40, 16, 231, 524, 336, 64, 3465, 8784, 7136, 2304, 256, 65835, 180756, 170720, 72320, 14080, 1024, 1514205, 4420728, 4649584, 2346240, 613120, 79872, 4096, 40883535, 125416476, 143221680, 81946816, 25939200, 4609024, 430080, 16384, 1267389585, 4051444896, 4941537984, 3113238016, 1131902464, 246636544, 31768576, 2228224, 65536
Offset: 0
Comments
Triangle T(n,k), read by rows, given by (3, 4, 7, 8, 11, 12, 15, 16, ... (A014601)) DELTA (4, 0, 4, 0, 4, 0, 4, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, May 14 2015.
Examples
[n\k][ 0, 1, 2, 3, 4, 5, 6 ] [0] 1, [1] 3, 4, [2] 21, 40, 16, [3] 231, 524, 336, 64, [4] 3465, 8784, 7136, 2304, 256, [5] 65835, 180756, 170720, 72320, 14080, 1024, [6] 1514205, 4420728, 4649584, 2346240, 613120, 79872, 4096.
Links
- Peter Luschny, Generalized Eulerian polynomials.
- Peter Luschny, The Stirling-Frobenius numbers.
Crossrefs
Programs
-
Mathematica
s[][0, 0] = 1; s[m][n_, k_] /; (k > n || k < 0) = 0; s[m_][n_, k_] := s[m][n, k] = s[m][n - 1, k - 1] + (m*n - 1)*s[m][n - 1, k]; T[n_, k_] := 4^k*s[4][n, k]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
-
Sage
@CachedFunction def SF_CS(n, k, m): if k > n or k < 0 : return 0 if n == 0 and k == 0: return 1 return m*SF_CS(n-1, k-1, m) + (m*n-1)*SF_CS(n-1, k, m) for n in (0..8): [SF_CS(n, k, 4) for k in (0..n)]
Formula
For a recurrence see the Sage program.
T(n,k) = 4^k * A225471(n,k). - Philippe Deléham, May 14 2015.
Comments