cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A229689 Number of defective 3-colorings of an n X 3 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

1, 43, 626, 6732, 62856, 539568, 4377888, 34105536, 257634432, 1899645696, 13735899648, 97733495808, 686049232896, 4760622968832, 32708331380736, 222789318524928, 1506002505596928, 10111798278291456, 67486591206162432
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Column 3 of A229694.

Examples

			Some solutions for n=3
..0..0..1....0..0..1....0..1..2....0..1..0....0..1..2....0..1..1....0..1..2
..2..1..2....2..1..2....0..1..0....2..0..2....1..2..0....0..2..1....1..2..1
..2..0..2....0..1..0....1..2..2....1..2..0....0..1..0....0..0..1....1..2..1
		

Crossrefs

Cf. A229694.

Formula

Empirical: a(n) = 18*a(n-1) -108*a(n-2) +216*a(n-3) for n > 4.
Empirical: g.f. x -x^2*(43-148*x+108*x^2) / (6*x-1)^3. - R. J. Mathar, Sep 29 2013

A229690 Number of defective 3-colorings of an nX4 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

3, 245, 5077, 80757, 1125333, 14461173, 175867605, 2054728053, 23284024533, 257577229557, 2794463987157, 29833314755445, 314218549864917, 3271569607417077, 33725758239805653, 344669380723927413
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Column 4 of A229694

Examples

			Some solutions for n=3
..0..0..1..0....0..1..0..2....0..1..2..0....0..1..2..1....0..1..0..2
..1..0..1..2....2..1..0..0....0..1..0..2....0..2..0..2....2..1..0..1
..1..0..0..2....2..0..1..2....0..1..2..1....0..1..1..2....2..0..0..1
		

Formula

Empirical: a(n) = 27*a(n-1) -243*a(n-2) +729*a(n-3) for n>4.
Empirical: g.f. 3*x-x^2*(245-1538*x+3213*x^2) / (9*x-1)^3. - R. J. Mathar, Sep 29 2013

A229691 Number of defective 3-colorings of an nX5 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

12, 1171, 35825, 848937, 17724789, 342532665, 6279934941, 110801828529, 1898544262293, 31786996628745, 522316663574733, 8450380115641377, 134940473888031045, 2130891564532483449, 33326706458497564413
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Column 5 of A229694

Examples

			Some solutions for n=3
..0..1..0..1..0....0..1..2..1..0....0..1..0..1..2....0..1..2..0..1
..0..1..0..1..2....2..1..0..1..2....2..1..2..0..2....0..2..1..0..2
..0..0..2..1..2....2..1..1..0..2....0..2..1..1..0....1..2..1..1..0
		

Formula

Empirical: a(n) = 45*a(n-1) -729*a(n-2) +4995*a(n-3) -13122*a(n-4) +14580*a(n-5) -5832*a(n-6) for n>7.
Empirical: 12*x -x^2*(-1171+16870*x-90471*x^2+210096*x^3-212220*x^4+81648*x^5) / (18*x^2-15*x+1)^3. - R. J. Mathar, Sep 29 2013

A229692 Number of defective 3-colorings of an n X 6 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

40, 5077, 230383, 8186713, 258006388, 7551515197, 210095323918, 5632122625852, 146747625919741, 3738362679893995, 93505337317628617, 2303524911169269100, 56025377123719298929, 1347778566401139093298, 32117071054579505478784
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Column 6 of A229694.

Examples

			Some solutions for n=3:
  0 1 2 1 0 0    0 1 0 1 2 2    0 1 0 2 0 2    0 1 2 1 2 0
  0 1 0 2 2 1    0 2 0 1 0 1    0 2 0 2 2 0    0 0 2 0 1 0
  2 1 0 1 2 0    2 1 2 1 2 0    0 2 0 1 2 1    1 0 1 2 0 1
		

Formula

Empirical: a(n) = 75*a(n-1) - 2145*a(n-2) + 29368*a(n-3) - 205200*a(n-4) + 803115*a(n-5) - 1842183*a(n-6) + 2460375*a(n-7) - 1771470*a(n-8) + 531441*a(n-9) for n > 11.

A229693 Number of defective 3-colorings of an n X 7 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

120, 20691, 1400413, 75035643, 3583403667, 159377253183, 6749642728251, 275739382892979, 10957241965280031, 425954258229381831, 16265054107660003947, 611918047133484899067, 22734198484723715670855
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Column 7 of A229694.

Examples

			Some solutions for n=3:
  0 0 1 2 1 2 1      0 0 1 0 1 2 1      0 0 1 0 1 2 0
  1 0 1 2 1 2 2      1 2 1 0 1 0 2      1 0 2 0 2 1 2
  1 2 1 2 1 0 2      1 2 0 2 1 0 2      2 1 2 1 0 1 0
		

Formula

Empirical: a(n) = 126*a(n-1) - 6345*a(n-2) + 165456*a(n-3) - 2474469*a(n-4) + 22918302*a(n-5) - 138045627*a(n-6) + 554666940*a(n-7) - 1494608922*a(n-8) + 2659094568*a(n-9) - 2986698420*a(n-10) + 1913187600*a(n-11) - 531441000*a(n-12) for n > 14.

A229695 Number of defective 3-colorings of a 2Xn 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 3, 43, 245, 1171, 5077, 20691, 80757, 305235, 1125333, 4067091, 14461173, 50723091, 175867605, 603736659, 2054728053, 6940088019, 23284024533, 77651501715, 257577229557, 850273182099, 2794463987157, 9147385165779
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Row 2 of A229694

Examples

			Some solutions for n=3
..0..1..1....0..1..1....0..1..2....0..1..0....0..0..1....0..1..0....0..0..1
..0..0..1....0..0..2....1..1..0....1..0..1....1..2..2....2..0..0....2..2..0
		

Formula

Empirical: a(n) = 9*a(n-1) -27*a(n-2) +27*a(n-3) for n>6.
Empirical: G.f. 3*x^2+43*x^3 -x^4*(245-1034*x+1153*x^2) / (3*x-1)^3. - R. J. Mathar, Sep 29 2013

A229696 Number of defective 3-colorings of a 3 X n 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 40, 626, 5077, 35825, 230383, 1400413, 8184819, 46455457, 257724695, 1403839397, 7532391243, 39908047865, 209177764015, 1086276818845, 5595663437379, 28620024582289, 145460267764487, 735134318022101
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Row 3 of A229694.

Examples

			Some solutions for n=3:
  0 1 0   0 1 0   0 1 1   0 0 1   0 1 0   0 1 0   0 1 0
  0 1 1   2 0 0   1 2 0   0 2 0   1 2 0   0 1 2   2 0 2
  2 1 0   2 1 2   0 2 1   0 1 2   1 1 2   1 2 1   1 1 0
		

Formula

Empirical: a(n) = 15*a(n-1) - 81*a(n-2) + 185*a(n-3) - 162*a(n-4) + 60*a(n-5) - 8*a(n-6) for n > 10.

A229697 Number of defective 3-colorings of a 4 X n 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 336, 6732, 80757, 848937, 8186713, 75035643, 663220698, 5704874295, 48038840103, 397625913450, 3244798314423, 26164241721531, 208829737022022, 1652110212078675, 12969730076956551, 101126149198462638
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Row 4 of A229694.

Examples

			Some solutions for n=3:
  0 0 1    0 0 1    0 1 2    0 1 2    0 0 1    0 0 1    0 1 2
  2 0 1    2 0 2    2 1 2    0 0 2    2 0 2    2 0 2    0 2 2
  1 0 0    1 1 0    2 0 2    1 0 2    2 0 1    2 0 2    1 0 2
  1 2 1    0 2 0    0 0 1    1 2 1    0 2 1    1 1 2    2 0 1
		

Formula

Empirical: a(n) = 27*a(n-1) - 288*a(n-2) + 1557*a(n-3) - 4644*a(n-4) + 8073*a(n-5) - 8343*a(n-6) + 5022*a(n-7) - 1620*a(n-8) + 216*a(n-9) for n > 17.

A229698 Number of defective 3-colorings of a 5 X n 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 2304, 62856, 1125333, 17724789, 258006388, 3583403667, 48115029568, 629879095575, 8082470014816, 102040738816275, 1270988929203520, 15651508367076687, 190863964416217648, 2307849686574725259
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Row 5 of A229694.

Examples

			Some solutions for n=3:
  0 1 0   0 1 0   0 1 0   0 0 1   0 0 1   0 1 0   0 1 0
  2 1 2   2 1 0   2 0 1   1 0 2   1 0 2   2 2 1   2 1 0
  0 1 0   2 1 2   2 0 1   2 0 1   1 0 2   0 2 1   2 2 1
  2 0 1   1 2 0   2 1 2   1 0 2   1 0 1   1 0 2   1 0 1
  0 2 0   0 2 0   2 0 2   1 2 1   2 0 0   1 0 0   0 2 1
		

Formula

Empirical: a(n) = 48*a(n-1) - 960*a(n-2) + 10468*a(n-3) - 68685*a(n-4) + 282276*a(n-5) - 718624*a(n-6) + 997536*a(n-7) - 166467*a(n-8) - 2005784*a(n-9) + 3520224*a(n-10) - 1956780*a(n-11) - 1660207*a(n-12) + 3547332*a(n-13) - 2236608*a(n-14) - 28632*a(n-15) + 1014720*a(n-16) - 774528*a(n-17) + 307392*a(n-18) - 71424*a(n-19) + 9216*a(n-20) - 512*a(n-21) for n > 27.

A229699 Number of defective 3-colorings of a 6 X n 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 14080, 539568, 14461173, 342532665, 7551515197, 159377253183, 3259483737876, 65096269054893, 1275742582477605, 24619023091178172, 469011723417138726, 8837860575136215933, 164977425368113931622, 3054546692947278299664
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Row 6 of A229694.

Examples

			Some solutions for n=3:
  0 1 0   0 1 0   0 1 0   0 1 0   0 1 0   0 1 0   0 1 0
  0 2 1   0 2 0   0 1 2   0 1 1   0 2 1   0 1 0   0 1 0
  1 0 2   1 2 0   1 0 1   1 2 0   1 1 2   1 0 2   0 2 1
  1 0 1   1 2 2   2 0 1   1 2 0   0 1 2   2 1 0   1 2 1
  1 2 1   0 1 2   1 2 2   0 1 2   0 1 0   0 1 2   0 2 1
  2 1 0   1 0 2   0 1 2   2 0 2   0 1 2   2 0 1   2 0 0
		

Crossrefs

Cf. A229694.

Formula

Empirical: a(n) = 93*a(n-1) - 3821*a(n-2) + 91881*a(n-3) - 1443186*a(n-4) + 15597045*a(n-5) - 117977554*a(n-6) + 609544785*a(n-7) - 1876860224*a(n-8) + 672776487*a(n-9) + 25778362941*a(n-10) - 141476097204*a(n-11) + 370797282552*a(n-12) - 240042337335*a(n-13) - 2043251213592*a(n-14) + 9124472514798*a(n-15) - 19258050947535*a(n-16) + 16290852033186*a(n-17) + 33202946615828*a(n-18) - 157802120078712*a(n-19) + 340033091646544*a(n-20) - 501365137481568*a(n-21) + 551133229309632*a(n-22) - 463504649118336*a(n-23) + 298842654582272*a(n-24) - 145678126101504*a(n-25) + 52056403136512*a(n-26) - 12877220044800*a(n-27) + 1971231621120*a(n-28) - 140685410304*a(n-29) for n > 39.
Showing 1-10 of 12 results. Next