cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A054322 Fourth unsigned column of Lanczos triangle A053125 (decreasing powers).

Original entry on oeis.org

4, 80, 896, 7680, 56320, 372736, 2293760, 13369344, 74711040, 403701760, 2122317824, 10905190400, 54962159616, 272461987840, 1331439861760, 6425271074816, 30666066493440, 144929376436224, 678948430151680
Offset: 0

Views

Author

Keywords

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • GAP
    List([0..20], n-> 4^n*Binomial(2*n+4, 3)); # G. C. Greubel, Jul 22 2019
  • Magma
    [4^n*Binomial(2*n+4, 3): n in [0..20]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    Table[4^n*Binomial[2*n+4, 3], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
    LinearRecurrence[{16,-96,256,-256},{4,80,896,7680},20] (* Harvey P. Dale, Mar 27 2023 *)
  • PARI
    vector(20, n, n--; 4^n*binomial(2*n+4, 3)) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [4^n*binomial(2*n+4, 3) for n in (0..20)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n) = 4^n*binomial(2*n+4, 3) = -A053125(n+3, 3) = 4*A054329(n).
G.f.: 4*(1+4*x)/(1-4*x)^4.
E.g.f.: (4/3)*(3 +48*x +120*x^2 +64*x^3)*exp(4*x). - G. C. Greubel, Jul 22 2019

A054324 Sixth unsigned column of Lanczos triangle A053125 (decreasing powers).

Original entry on oeis.org

6, 224, 4032, 50688, 512512, 4472832, 35094528, 254017536, 1725825024, 11142168576, 68975329280, 412216197120, 2390853943296, 13514114596864, 74693776244736, 404792077713408, 2155824474488832, 11304491362025472
Offset: 0

Views

Author

Keywords

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • GAP
    List([0..20], n-> 4^n*Binomial(2*n+6, 5)); # G. C. Greubel, Jul 22 2019
  • Magma
    [4^n*Binomial(2*n+6, 5): n in [0..20]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    Table[4^n Binomial[2n+6,5],{n,0,20}] (* or *) LinearRecurrence[{24,-240, 1280,-3840,6144,-4096},{6,224,4032,50688,512512,4472832},20] (* Harvey P. Dale, Jul 02 2017 *)
  • PARI
    vector(20, n, n--; 4^n*binomial(2*n+6, 5)) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [4^n*binomial(2*n+6, 5) for n in (0..20)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n) = 4^n*binomial(2*n+6, 5) = -A053125(n+5, 5)= 2*A054330(n).
G.f.: 2*(3+4*x)*(1+12*x)/(1-4*x)^6.
E.g.f.: (2/15)*(45 +1500*x +8760*x^2 +15840*x^3 +10240*x^4 +2048*x^5) * exp(4*x). - G. C. Greubel, Jul 22 2019

A054326 Eighth unsigned column of Lanczos triangle A053125 (decreasing powers).

Original entry on oeis.org

8, 480, 12672, 219648, 2928640, 32587776, 317521920, 2794192896, 22682271744, 172438323200, 1241555927040, 8538764083200, 56469693136896, 361019918516224, 2240813287342080, 13550896696786944, 80073480481013760
Offset: 0

Views

Author

Keywords

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • GAP
    List([0..20], n-> 4^n*Binomial(2*n+8,7)); # G. C. Greubel, Jul 22 2019
  • Magma
    [4^n*Binomial(2*n+8,7): n in [0..20]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    Table[4^n Binomial[2n+8,7],{n,0,20}] (* or *) LinearRecurrence[{32,-448, 3584,-17920,57344,-114688,131072,-65536},{8,480,12672,219648,2928640, 32587776,317521920,2794192896},20] (* Harvey P. Dale, Oct 23 2012 *)
  • PARI
    vector(20, n, n--; 4^n*binomial(2*n+8,7)) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [4^n*binomial(2*n+8,7) for n in (0..20)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n) = 4^n*binomial(2*n+8, 7) = -A053125(n+7, 7) = 8*A054331(n).
G.f.: 8*(4*x+1)*(16*x^2+24*x+1)/(1-4*x)^8.
a(0)=8, a(1)=480, a(2)=12672, a(3)=219648, a(4)=2928640, a(5)=32587776, a(6)=317521920, a(7)=2794192896, a(n) = 32*a(n-1) - 448*a(n-2) + 3584*a(n-3) - 17920*a(n-4) + 57344*a(n-5) - 114688*a(n-6) + 131072*a(n-7) - 65536*a(n-8). - Harvey P. Dale, Oct 23 2012

A054323 Fifth column of Lanczos triangle A053125 (decreasing powers).

Original entry on oeis.org

5, 140, 2016, 21120, 183040, 1397760, 9748480, 63504384, 392232960, 2321285120, 13264486400, 73610035200, 398475657216, 2111580405760, 10984378859520, 56221121904640, 283661115064320, 1413061420253184, 6959221409054720
Offset: 0

Views

Author

Keywords

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Bisection of A080951.

Programs

  • GAP
    List([0..20], n-> 4^n*Binomial(2*n+5, 4)); # G. C. Greubel, Jul 22 2019
  • Magma
    [4^n*Binomial(2*n+5, 4): n in [0..20]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    Table[4^n Binomial[2n+5,4],{n,0,20}] (* or *) LinearRecurrence[{20,-160, 640,-1280,1024},{5,140,2016,21120,183040},20] (* Harvey P. Dale, Mar 03 2018 *)
  • PARI
    vector(20, n, n--; 4^n*binomial(2*n+5, 4)) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [4^n*binomial(2*n+5, 4) for n in (0..20)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n) = 4^n*binomial(2*n+5, 4) = 4^n*A053126(n+4) = A053125(n+4, 4).
G.f.: (5 +40*x +16*x^2)/(1-4*x)^5.
E.g.f.: (15 +360*x +1464*x^2 +1664*x^3 +512*x^4)*exp(4*x)/3. - G. C. Greubel, Jul 22 2019
a(n) = 20*a(n-1)-160*a(n-2)+640*a(n-3)-1280*a(n-4)+1024*a(n-5). - Wesley Ivan Hurt, May 02 2021

A054325 Seventh column of Lanczos triangle A053125 (decreasing powers).

Original entry on oeis.org

7, 336, 7392, 109824, 1281280, 12673024, 111132672, 889061376, 6615662592, 46425702400, 310388981760, 1992378286080, 12352745373696, 74327630282752, 435713694760960, 2496217812566016, 14012859084177408, 77247357640507392
Offset: 0

Views

Author

Keywords

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • GAP
    List([0..20], n-> 4^n*Binomial(2*n+7, 6)); # G. C. Greubel, Jul 22 2019
  • Magma
    [4^n*Binomial(2*n+7, 6): n in [0..20]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    Table[4^n*Binomial[2*n+7, 6], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
  • PARI
    vector(20, n, n--; 4^n*binomial(2*n+7, 6)) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [4^n*binomial(2*n+7, 6) for n in (0..20)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n) = 4^n*binomial(2*n+7, 6) = A053125(n+6, 6).
G.f.: (7 +140*x +336*x^2 +64*x^3)/(1-4*x)^7.

A054327 Ninth column of Lanczos triangle A053125 (decreasing powers).

Original entry on oeis.org

9, 660, 20592, 411840, 6223360, 77395968, 833495040, 8033304576, 70882099200, 581979340800, 4500640235520, 33087710822400, 232937484189696, 1579462143508480, 10363761453957120, 66060621396836352
Offset: 0

Views

Author

Keywords

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • GAP
    List([0..20], n-> 4^n*Binomial(2*n+9,8)); # G. C. Greubel, Jul 22 2019
  • Magma
    [4^n*Binomial(2*n+9,8): n in [0..20]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    Table[4^n*Binomial[2*n+9, 8], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
  • PARI
    vector(20, n, n--; 4^n*binomial(2*n+9,8)) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [4^n*binomial(2*n+9,8) for n in (0..20)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n) = 4^n*binomial(2*n+9, 8) = A053125(n+8, 8).
G.f.: (4*x+3)*(64*x^3+528*x^2+108*x+3)/(1-4*x)^9.

A054328 Tenth unsigned column of Lanczos triangle A053125 (decreasing powers).

Original entry on oeis.org

10, 880, 32032, 732160, 12446720, 171991040, 2037432320, 21422145536, 204770508800, 1810602393600, 15002134118400, 117645194035200, 879986051383296, 6317848574033920, 43758103916707840, 293602761763717120
Offset: 0

Views

Author

Keywords

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • GAP
    List([0..20], n-> 4^n*Binomial(2*n+10,9)); # G. C. Greubel, Jul 22 2019
  • Magma
    [4^n*Binomial(2*n+10,9): n in [0..20]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    CoefficientList[Series[2(1+40x+80x^2)(5+40x+16x^2)/(1-4x)^10,{x,0,20}],x]  (* Harvey P. Dale, Feb 28 2011 *)
    Table[4^n*Binomial[2*n+10, 9], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
  • PARI
    vector(20, n, n--; 4^n*binomial(2*n+10,9)) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [4^n*binomial(2*n+10,9) for n in (0..20)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n) = 4^n*binomial(2*n+10, 9)= -A053125(n+9, 9) = 2* A054332(n).
G.f. 2*(1+40*x+80*x^2)*(5+40*x+16*x^2)/(1-4*x)^10.

A054329 One quarter of fourth unsigned column of Lanczos' triangle A053125.

Original entry on oeis.org

1, 20, 224, 1920, 14080, 93184, 573440, 3342336, 18677760, 100925440, 530579456, 2726297600, 13740539904, 68115496960, 332859965440, 1606317768704, 7666516623360, 36232344109056, 169737107537920, 788899592929280
Offset: 0

Views

Author

Keywords

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4^(n-1)*Binomial(2*n+4,3)); # G. C. Greubel, Jul 22 2019
  • Magma
    [4^(n-1)*Binomial(2*n+4,3): n in [0..30]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    Table[4^(n-1)*Binomial[2*n+4, 3], {n,0,30}] (* G. C. Greubel, Jul 22 2019 *)
  • PARI
    vector(30, n, n--; 4^(n-1)*binomial(2*n+4,3)) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [4^(n-1)*binomial(2*n+4,3) for n in (0..30)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n)= 4^(n-1)*binomial(2*n+4, 3)= -A053125(n+3, 3)/4 = A054322(n)/4.
G.f.: (1+4*x)/(1-4*x)^4.
E.g.f.: (3 + 48*x + 120*x^2 + 64*x^3)*exp(4*x)/3. - G. C. Greubel, Jul 22 2019

A054330 One half of sixth unsigned column of Lanczos' triangle A053125.

Original entry on oeis.org

3, 112, 2016, 25344, 256256, 2236416, 17547264, 127008768, 862912512, 5571084288, 34487664640, 206108098560, 1195426971648, 6757057298432, 37346888122368, 202396038856704, 1077912237244416, 5652245681012736
Offset: 0

Views

Author

Keywords

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • GAP
    List([0..20], n-> 2^(2*n-1)*Binomial(2*n+6,5)); # G. C. Greubel, Jul 22 2019
  • Magma
    [2^(2*n-1)*Binomial(2*n+6,5): n in [0..20]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    Table[2^(2*n-1)*Binomial[2*n+6, 5], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
  • PARI
    vector(20, n, n--; 2^(2*n-1)*binomial(2*n+6,5)) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [2^(2*n-1)*binomial(2*n+6,5) for n in (0..20)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n)= 2^(2*n-1)*binomial(2*n+6, 5) = -A053125(n+5, 5)/2 = A054324(n)/2.
G.f.: (4*x+3)*(12*x+1)/(1-4*x)^6.
E.g.f.: (90 + 3000*x + 17520*x^2 + 31680*x^3 + 20480*x^4 + 4096*x^5)* exp(4*x)/30. - G. C. Greubel, Jul 22 2019

A054331 One eighth of eighth unsigned column of Lanczos' triangle A053125.

Original entry on oeis.org

1, 60, 1584, 27456, 366080, 4073472, 39690240, 349274112, 2835283968, 21554790400, 155194490880, 1067345510400, 7058711642112, 45127489814528, 280101660917760, 1693862087098368, 10009185060126720, 57935518230380544
Offset: 0

Views

Author

Keywords

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • GAP
    List([0..20], n-> 2^(2*n-3)*Binomial(2*n+8, 7)); # G. C. Greubel, Jul 22 2019
  • Magma
    [2^(2*n-3)*Binomial(2*n+8, 7): n in [0..20]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    Table[4^n Binomial[2n+8,7]/8,{n,0,20}] (* Harvey P. Dale, Nov 03 2011 *)
    LinearRecurrence[{32,-448,3584,-17920,57344,-114688,131072,-65536},{1,60,1584,27456,366080,4073472,39690240,349274112},20] (* Harvey P. Dale, Feb 25 2022 *)
  • PARI
    vector(20, n, n--; 2^(2*n-3)*binomial(2*n+8, 7)) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [2^(2*n-3)*binomial(2*n+8, 7) for n in (0..20)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n) = 2^(2*n-3)*binomial(2*n+8, 7) = -A053125(n+7, 7)/8 = A054326(n)/8.
G.f. (1+4*x)*(1+24*x+16*x^2)/(1-4*x)^8.
Showing 1-10 of 14 results. Next