A054322
Fourth unsigned column of Lanczos triangle A053125 (decreasing powers).
Original entry on oeis.org
4, 80, 896, 7680, 56320, 372736, 2293760, 13369344, 74711040, 403701760, 2122317824, 10905190400, 54962159616, 272461987840, 1331439861760, 6425271074816, 30666066493440, 144929376436224, 678948430151680
Offset: 0
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
-
List([0..20], n-> 4^n*Binomial(2*n+4, 3)); # G. C. Greubel, Jul 22 2019
-
[4^n*Binomial(2*n+4, 3): n in [0..20]]; // G. C. Greubel, Jul 22 2019
-
Table[4^n*Binomial[2*n+4, 3], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
LinearRecurrence[{16,-96,256,-256},{4,80,896,7680},20] (* Harvey P. Dale, Mar 27 2023 *)
-
vector(20, n, n--; 4^n*binomial(2*n+4, 3)) \\ G. C. Greubel, Jul 22 2019
-
[4^n*binomial(2*n+4, 3) for n in (0..20)] # G. C. Greubel, Jul 22 2019
A054324
Sixth unsigned column of Lanczos triangle A053125 (decreasing powers).
Original entry on oeis.org
6, 224, 4032, 50688, 512512, 4472832, 35094528, 254017536, 1725825024, 11142168576, 68975329280, 412216197120, 2390853943296, 13514114596864, 74693776244736, 404792077713408, 2155824474488832, 11304491362025472
Offset: 0
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
-
List([0..20], n-> 4^n*Binomial(2*n+6, 5)); # G. C. Greubel, Jul 22 2019
-
[4^n*Binomial(2*n+6, 5): n in [0..20]]; // G. C. Greubel, Jul 22 2019
-
Table[4^n Binomial[2n+6,5],{n,0,20}] (* or *) LinearRecurrence[{24,-240, 1280,-3840,6144,-4096},{6,224,4032,50688,512512,4472832},20] (* Harvey P. Dale, Jul 02 2017 *)
-
vector(20, n, n--; 4^n*binomial(2*n+6, 5)) \\ G. C. Greubel, Jul 22 2019
-
[4^n*binomial(2*n+6, 5) for n in (0..20)] # G. C. Greubel, Jul 22 2019
A054326
Eighth unsigned column of Lanczos triangle A053125 (decreasing powers).
Original entry on oeis.org
8, 480, 12672, 219648, 2928640, 32587776, 317521920, 2794192896, 22682271744, 172438323200, 1241555927040, 8538764083200, 56469693136896, 361019918516224, 2240813287342080, 13550896696786944, 80073480481013760
Offset: 0
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (32, -448, 3584, -17920, 57344, -114688, 131072, -65536).
-
List([0..20], n-> 4^n*Binomial(2*n+8,7)); # G. C. Greubel, Jul 22 2019
-
[4^n*Binomial(2*n+8,7): n in [0..20]]; // G. C. Greubel, Jul 22 2019
-
Table[4^n Binomial[2n+8,7],{n,0,20}] (* or *) LinearRecurrence[{32,-448, 3584,-17920,57344,-114688,131072,-65536},{8,480,12672,219648,2928640, 32587776,317521920,2794192896},20] (* Harvey P. Dale, Oct 23 2012 *)
-
vector(20, n, n--; 4^n*binomial(2*n+8,7)) \\ G. C. Greubel, Jul 22 2019
-
[4^n*binomial(2*n+8,7) for n in (0..20)] # G. C. Greubel, Jul 22 2019
A054323
Fifth column of Lanczos triangle A053125 (decreasing powers).
Original entry on oeis.org
5, 140, 2016, 21120, 183040, 1397760, 9748480, 63504384, 392232960, 2321285120, 13264486400, 73610035200, 398475657216, 2111580405760, 10984378859520, 56221121904640, 283661115064320, 1413061420253184, 6959221409054720
Offset: 0
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
-
List([0..20], n-> 4^n*Binomial(2*n+5, 4)); # G. C. Greubel, Jul 22 2019
-
[4^n*Binomial(2*n+5, 4): n in [0..20]]; // G. C. Greubel, Jul 22 2019
-
Table[4^n Binomial[2n+5,4],{n,0,20}] (* or *) LinearRecurrence[{20,-160, 640,-1280,1024},{5,140,2016,21120,183040},20] (* Harvey P. Dale, Mar 03 2018 *)
-
vector(20, n, n--; 4^n*binomial(2*n+5, 4)) \\ G. C. Greubel, Jul 22 2019
-
[4^n*binomial(2*n+5, 4) for n in (0..20)] # G. C. Greubel, Jul 22 2019
A054325
Seventh column of Lanczos triangle A053125 (decreasing powers).
Original entry on oeis.org
7, 336, 7392, 109824, 1281280, 12673024, 111132672, 889061376, 6615662592, 46425702400, 310388981760, 1992378286080, 12352745373696, 74327630282752, 435713694760960, 2496217812566016, 14012859084177408, 77247357640507392
Offset: 0
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
-
List([0..20], n-> 4^n*Binomial(2*n+7, 6)); # G. C. Greubel, Jul 22 2019
-
[4^n*Binomial(2*n+7, 6): n in [0..20]]; // G. C. Greubel, Jul 22 2019
-
Table[4^n*Binomial[2*n+7, 6], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
-
vector(20, n, n--; 4^n*binomial(2*n+7, 6)) \\ G. C. Greubel, Jul 22 2019
-
[4^n*binomial(2*n+7, 6) for n in (0..20)] # G. C. Greubel, Jul 22 2019
A054327
Ninth column of Lanczos triangle A053125 (decreasing powers).
Original entry on oeis.org
9, 660, 20592, 411840, 6223360, 77395968, 833495040, 8033304576, 70882099200, 581979340800, 4500640235520, 33087710822400, 232937484189696, 1579462143508480, 10363761453957120, 66060621396836352
Offset: 0
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (36, -576, 5376, -32256, 129024, -344064, 589824, -589824, 262144).
-
List([0..20], n-> 4^n*Binomial(2*n+9,8)); # G. C. Greubel, Jul 22 2019
-
[4^n*Binomial(2*n+9,8): n in [0..20]]; // G. C. Greubel, Jul 22 2019
-
Table[4^n*Binomial[2*n+9, 8], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
-
vector(20, n, n--; 4^n*binomial(2*n+9,8)) \\ G. C. Greubel, Jul 22 2019
-
[4^n*binomial(2*n+9,8) for n in (0..20)] # G. C. Greubel, Jul 22 2019
A054328
Tenth unsigned column of Lanczos triangle A053125 (decreasing powers).
Original entry on oeis.org
10, 880, 32032, 732160, 12446720, 171991040, 2037432320, 21422145536, 204770508800, 1810602393600, 15002134118400, 117645194035200, 879986051383296, 6317848574033920, 43758103916707840, 293602761763717120
Offset: 0
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (40, -720, 7680, -53760, 258048, -860160, 1966080, -2949120, 2621440, -1048576).
-
List([0..20], n-> 4^n*Binomial(2*n+10,9)); # G. C. Greubel, Jul 22 2019
-
[4^n*Binomial(2*n+10,9): n in [0..20]]; // G. C. Greubel, Jul 22 2019
-
CoefficientList[Series[2(1+40x+80x^2)(5+40x+16x^2)/(1-4x)^10,{x,0,20}],x] (* Harvey P. Dale, Feb 28 2011 *)
Table[4^n*Binomial[2*n+10, 9], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
-
vector(20, n, n--; 4^n*binomial(2*n+10,9)) \\ G. C. Greubel, Jul 22 2019
-
[4^n*binomial(2*n+10,9) for n in (0..20)] # G. C. Greubel, Jul 22 2019
A054329
One quarter of fourth unsigned column of Lanczos' triangle A053125.
Original entry on oeis.org
1, 20, 224, 1920, 14080, 93184, 573440, 3342336, 18677760, 100925440, 530579456, 2726297600, 13740539904, 68115496960, 332859965440, 1606317768704, 7666516623360, 36232344109056, 169737107537920, 788899592929280
Offset: 0
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
-
List([0..30], n-> 4^(n-1)*Binomial(2*n+4,3)); # G. C. Greubel, Jul 22 2019
-
[4^(n-1)*Binomial(2*n+4,3): n in [0..30]]; // G. C. Greubel, Jul 22 2019
-
Table[4^(n-1)*Binomial[2*n+4, 3], {n,0,30}] (* G. C. Greubel, Jul 22 2019 *)
-
vector(30, n, n--; 4^(n-1)*binomial(2*n+4,3)) \\ G. C. Greubel, Jul 22 2019
-
[4^(n-1)*binomial(2*n+4,3) for n in (0..30)] # G. C. Greubel, Jul 22 2019
A054330
One half of sixth unsigned column of Lanczos' triangle A053125.
Original entry on oeis.org
3, 112, 2016, 25344, 256256, 2236416, 17547264, 127008768, 862912512, 5571084288, 34487664640, 206108098560, 1195426971648, 6757057298432, 37346888122368, 202396038856704, 1077912237244416, 5652245681012736
Offset: 0
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
-
List([0..20], n-> 2^(2*n-1)*Binomial(2*n+6,5)); # G. C. Greubel, Jul 22 2019
-
[2^(2*n-1)*Binomial(2*n+6,5): n in [0..20]]; // G. C. Greubel, Jul 22 2019
-
Table[2^(2*n-1)*Binomial[2*n+6, 5], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
-
vector(20, n, n--; 2^(2*n-1)*binomial(2*n+6,5)) \\ G. C. Greubel, Jul 22 2019
-
[2^(2*n-1)*binomial(2*n+6,5) for n in (0..20)] # G. C. Greubel, Jul 22 2019
A054331
One eighth of eighth unsigned column of Lanczos' triangle A053125.
Original entry on oeis.org
1, 60, 1584, 27456, 366080, 4073472, 39690240, 349274112, 2835283968, 21554790400, 155194490880, 1067345510400, 7058711642112, 45127489814528, 280101660917760, 1693862087098368, 10009185060126720, 57935518230380544
Offset: 0
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (32,-448,3584,-17920,57344,-114688,131072,-65536).
-
List([0..20], n-> 2^(2*n-3)*Binomial(2*n+8, 7)); # G. C. Greubel, Jul 22 2019
-
[2^(2*n-3)*Binomial(2*n+8, 7): n in [0..20]]; // G. C. Greubel, Jul 22 2019
-
Table[4^n Binomial[2n+8,7]/8,{n,0,20}] (* Harvey P. Dale, Nov 03 2011 *)
LinearRecurrence[{32,-448,3584,-17920,57344,-114688,131072,-65536},{1,60,1584,27456,366080,4073472,39690240,349274112},20] (* Harvey P. Dale, Feb 25 2022 *)
-
vector(20, n, n--; 2^(2*n-3)*binomial(2*n+8, 7)) \\ G. C. Greubel, Jul 22 2019
-
[2^(2*n-3)*binomial(2*n+8, 7) for n in (0..20)] # G. C. Greubel, Jul 22 2019
Showing 1-10 of 14 results.