cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A054328 Tenth unsigned column of Lanczos triangle A053125 (decreasing powers).

Original entry on oeis.org

10, 880, 32032, 732160, 12446720, 171991040, 2037432320, 21422145536, 204770508800, 1810602393600, 15002134118400, 117645194035200, 879986051383296, 6317848574033920, 43758103916707840, 293602761763717120
Offset: 0

Views

Author

Keywords

References

  • C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

Crossrefs

Programs

  • GAP
    List([0..20], n-> 4^n*Binomial(2*n+10,9)); # G. C. Greubel, Jul 22 2019
  • Magma
    [4^n*Binomial(2*n+10,9): n in [0..20]]; // G. C. Greubel, Jul 22 2019
    
  • Mathematica
    CoefficientList[Series[2(1+40x+80x^2)(5+40x+16x^2)/(1-4x)^10,{x,0,20}],x]  (* Harvey P. Dale, Feb 28 2011 *)
    Table[4^n*Binomial[2*n+10, 9], {n,0,20}] (* G. C. Greubel, Jul 22 2019 *)
  • PARI
    vector(20, n, n--; 4^n*binomial(2*n+10,9)) \\ G. C. Greubel, Jul 22 2019
    
  • Sage
    [4^n*binomial(2*n+10,9) for n in (0..20)] # G. C. Greubel, Jul 22 2019
    

Formula

a(n) = 4^n*binomial(2*n+10, 9)= -A053125(n+9, 9) = 2* A054332(n).
G.f. 2*(1+40*x+80*x^2)*(5+40*x+16*x^2)/(1-4*x)^10.
Showing 1-1 of 1 results.