cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A327999 a(n) = Sum_{k=0..2n}(k!*(2n - k)!)/(floor(k/2)!*floor((2n - k)/2)!)^2.

Original entry on oeis.org

1, 5, 28, 160, 896, 4864, 25600, 131072, 655360, 3211264, 15466496, 73400320, 343932928, 1593835520, 7314866176, 33285996544, 150323855360, 674309865472, 3006477107200, 13331578486784, 58823872086016, 258385232527360, 1130297953353728, 4925812092436480
Offset: 0

Views

Author

Peter Luschny, Oct 01 2019

Keywords

Crossrefs

Even bisection of A328000.

Programs

  • Mathematica
    LinearRecurrence[{12, -48, 64}, {1, 5, 28}, 24] (* Michael De Vlieger, Feb 07 2020 *)
  • PARI
    Vec((1 - 7*x + 16*x^2) / (1 - 4*x)^3 + O(x^25)) \\ Colin Barker, Feb 05 2020
    
  • PARI
    apply( {A327999(n)=(n^2+n+8)<<(2*n-3)}, [0..25]) \\ M. F. Hasler, Feb 07 2020

Formula

a(n) = 4^n*(n^2 + n + 8)/8.
a(n) = [x^n] (-16*x^2 + 7*x - 1)/(4*x - 1)^3.
a(n) = n! [x^n] exp(4*x)*(2*x^2 + x + 1).
a(n) = a(n-1)*4*(8 + n + n^2)/(8 - n + n^2).
a(n) = A328000(2*n).
From Colin Barker, Feb 05 2020: (Start)
a(n) = 12*a(n-1) - 48*a(n-2) + 64*a(n-3) for n>2.
a(n) = 2^(2*n - 3)*(8 + n + n^2).
(End)

A328001 T(n, k) = k!*(n-k)!/(floor(k/2)!*floor((n-k)/2)!)^2. Triangle read by rows, 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 6, 2, 2, 6, 6, 6, 4, 6, 6, 30, 6, 12, 12, 6, 30, 20, 30, 12, 36, 12, 30, 20, 140, 20, 60, 36, 36, 60, 20, 140, 70, 140, 40, 180, 36, 180, 40, 140, 70, 630, 70, 280, 120, 180, 180, 120, 280, 70, 630, 252, 630, 140, 840, 120, 900, 120, 840, 140, 630, 252
Offset: 0

Views

Author

Peter Luschny, Oct 01 2019

Keywords

Examples

			                               1;
                              1, 1;
                            2, 1, 2;
                           6, 2, 2, 6;
                         6, 6, 4, 6, 6;
                      30, 6, 12, 12, 6, 30;
                   20, 30, 12, 36, 12, 30, 20;
                140, 20, 60, 36, 36, 60, 20, 140;
             70, 140, 40, 180, 36, 180, 40, 140, 70;
         630, 70, 280, 120, 180, 180, 120, 280, 70, 630;
		

Crossrefs

Row sums in A328000. Central column in A327998.
Cf. A056040.

Programs

  • Maple
    T := (n, k) -> k!*(n-k)!/(iquo(k, 2)!*iquo(n-k, 2)!)^2:
    seq(seq(T(n,k), k=0..n), n=0..10);

Formula

T(n, k) = s(k)*s(n-k) where s(n) = A056040(n).
Showing 1-2 of 2 results.