cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A328000 a(n) = Sum_{k=0..n}(k!*(n - k)!)/(floor(k/2)!*floor((n - k)/2)!)^2.

Original entry on oeis.org

1, 2, 5, 16, 28, 96, 160, 512, 896, 2560, 4864, 12288, 25600, 57344, 131072, 262144, 655360, 1179648, 3211264, 5242880, 15466496, 23068672, 73400320, 100663296, 343932928, 436207616, 1593835520, 1879048192, 7314866176, 8053063680, 33285996544, 34359738368
Offset: 0

Views

Author

Peter Luschny, Oct 01 2019

Keywords

Crossrefs

Programs

  • Magma
    [IsOdd(n) select 2^(n - 1)*(n + 1) else 2^(n - 5)*(n*(n + 2) + 32):n in [0..30]]; // Marius A. Burtea, Feb 05 2020
  • Maple
    swing := n -> n!/iquo(n,2)!^2: a := n -> add(swing(k)*swing(n-k), k=0..n):
    seq(`if`(irem(n, 2) = 0, 2 + n*(n + 2)/16, n + 1)*2^(n - 1), n=0..31);
  • Mathematica
    A328000List[len_] := CoefficientList[Series[(4 x^2 - x - 1)^2 / (1 - 4 x^2)^3 , {x, 0, len}], x]; A328000List[31]
    LinearRecurrence[{0,12,0,-48,0,64},{1,2,5,16,28,96},40] (* Harvey P. Dale, Jun 19 2022 *)
  • PARI
    x='x + O('x^32);
    Vec(serlaplace(((3*x + 8)*sinh(2*x) + (2*x^2 + 16*(x + 1))*cosh(2*x))/16))
    
  • PARI
    Vec((1 + x - 4*x^2)^2 / ((1 - 2*x)^3*(1 + 2*x)^3) + O(x^30)) \\ Colin Barker, Feb 05 2020
    

Formula

a(n) = Sum_{k=0..n} s(k)*s(n-k) where s(n) = A056040(n).
a(n) = [x^n] (4*x^2 - x - 1)^2 / (1 - 4*x^2)^3.
a(n) = 2^(n - 5)*(n*(n + 2) + 32) if n even else 2^(n - 1)*(n + 1).
a(2*n) = A327999(n).
a(2*n-1) = A002699(n), (with a(-1) = 0).
a(2^n-1) = 2^(2^n - 2 + n) for n >= 1.
2*a(2*n)/2^n = A081908(n+1).
4*a(2*n)/4^n = A145018(n+1).
2*a(2*n-1)/4^n = A001477(n).
From Stefano Spezia, Oct 19 2019: (Start)
a(n) = n! [x^n] (1/32)*exp(-2*x)*(8 + exp(4*x)*(8 + x)*(3 + 2*x) + x*(13 + 2*x)).
a(n) = 12*a(n-2) - 48*a(n-4) + 64*a(n-6) for n > 5. (End)

A327998 a(n) = (n!/floor(n/2)!^2)^2.

Original entry on oeis.org

1, 1, 4, 36, 36, 900, 400, 19600, 4900, 396900, 63504, 7683984, 853776, 144288144, 11778624, 2650190400, 165636900, 47869064100, 2363904400, 853369488400, 34134779536, 15053437775376, 497634306624, 263248548204096, 7312459672336, 4570287295210000, 108172480360000
Offset: 0

Views

Author

Peter Luschny, Oct 19 2019

Keywords

Crossrefs

Central column of A328001.
Even bisection is A002894.

Programs

  • Maple
    seq((n!/iquo(n,2)!^2)^2, n = 0..26); # Or:
    gf := (2/(Pi*(1 - 16*x^2)^2))*(2*x*EllipticE(4*x) + (16*x^2 - 1)*(16*x^2 - 1 + x)* EllipticK(4*x)): ser := series(gf, x, 30): seq(coeff(ser, x, n), n = 0..26);
  • Mathematica
    Table[(n!/(Floor[n/2]!)^2)^2,{n,0,30}] (* Harvey P. Dale, May 11 2022 *)

Formula

a(n) = [x^n] (2/(Pi*(1 - 16*x^2)^2))*(2*x*EllipticE(4*x) + (16*x^2 - 1)*(16*x^2 - 1 + x)*EllipticK(4*x)).
Showing 1-2 of 2 results.