A372492
G.f. satisfies A(A(A(A(x)))) = F(x), where F(x) is the g.f. for A002697(n) = n*4^(n-1).
Original entry on oeis.org
0, 1, 2, 0, 4, -8, -8, 288, -1712, -1888, 105472, -288576, -10404800, 84940672, 1454871936, -24372060160, -255228956416, 8232158755328, 49829958005760, -3390379506089984, -7038865141000192, 1699612131395493888, -3459036721655810048, -1025681798088053424128
Offset: 0
B(x) = x + 4*x^2 + 8*x^3 + 16*x^4 + 32*x^5 + 256*x^7 + 768*x^8 - 14848*x^9 + 51200*x^10 + ...
A083672
Binomial transform of 1,8,48,256,1280,6144,... (cf. A002697).
Original entry on oeis.org
1, 1, 9, 25, 97, 321, 1097, 3641, 12033, 39361, 127945, 413337, 1328609, 4251521, 13551753, 43046713, 136314625, 430467201, 1355971721, 4261625369, 13366006881, 41841412801, 130754415049, 407953774905, 1270932914177
Offset: 0
-
LinearRecurrence[{4,2,-12,-9},{1,1,9,25},30] (* Harvey P. Dale, Feb 07 2023 *)
A002802
a(n) = (2*n+3)!/(6*n!*(n+1)!).
Original entry on oeis.org
1, 10, 70, 420, 2310, 12012, 60060, 291720, 1385670, 6466460, 29745716, 135207800, 608435100, 2714556600, 12021607800, 52895074320, 231415950150, 1007340018300, 4365140079300, 18839025605400, 81007810103220, 347176329013800, 1483389769422600
Offset: 0
G.f. = 1 + 10*x + 70*x^2 + 420*x^3 + 2310*x^4 + 12012*x^5 + 60060*x^6 + ...
- C. Jordan, Calculus of Finite Differences. Röttig and Romwalter, Budapest, 1939; Chelsea, NY, 1965, p. 449.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- Cyril Banderier and Michael Wallner, Young Tableaux with Periodic Walls: Counting with the Density Method, Séminaire Lotharingien de Combinatoire, 85B (2021), Art. 47, 12 pp.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See pp. 4, 12.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus: a compendium of results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.2.6. See p. 9. See also arXiv:2305.01100, 2023. See pp. 9, 19.
- R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv preprint arXiv:1306.4628 [math.CO], 2013.
- R. Cori and G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344.
- Alain Goupil and Gilles Schaeffer, Factoring N-Cycles and Counting Maps of Given Genus, Europ. J. Combinatorics (1998) 19 819-834.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. I, J. Comb. Theory B 13 (1972), 192-218 (Tab.1).
- Liang Zhao and Fengyao Yan, Note on Total Positivity for a Class of Recursive Matrices, Journal of Integer Sequences, Vol. 19 (2016), Article 16.6.5.
- Notes.
-
F:=Factorial;; List([0..25], n-> F(2*n+3)/(6*F(n)*F(n+1)) ); # G. C. Greubel, Jul 20 2019
-
F:=Factorial; [F(2*n+3)/(6*F(n)*F(n+1)): n in [0..25]]; // G. C. Greubel, Jul 20 2019
-
seq(simplify(4^n*hypergeom([-n,-3/2], [1], 1)),n=0..25); # Peter Luschny, Apr 26 2016
-
Table[(2*n+3)!/(6*n!*(n+1)!), {n, 0, 25}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
-
{a(n) = if( n<0, 0, (2*n + 3)! / (6 * n! * (n+1)!))}; /* Michael Somos, Sep 16 2013 */
-
{a(n) = 2^(n+3) * polcoeff( pollegendre(n+4), n) / 3}; /* Michael Somos, Sep 16 2013 */
-
f=factorial; [f(2*n+3)/(6*f(n)*f(n+1)) for n in (0..25)] # G. C. Greubel, Jul 20 2019
A027465
Cube of lower triangular normalized binomial matrix.
Original entry on oeis.org
1, 3, 1, 9, 6, 1, 27, 27, 9, 1, 81, 108, 54, 12, 1, 243, 405, 270, 90, 15, 1, 729, 1458, 1215, 540, 135, 18, 1, 2187, 5103, 5103, 2835, 945, 189, 21, 1, 6561, 17496, 20412, 13608, 5670, 1512, 252, 24, 1, 19683, 59049, 78732, 61236, 30618, 10206, 2268
Offset: 0
Example: n = 3 offers 2^3 = 8 different binary vectors (0,0,0), (0,0,1), ..., (1,1,0), (1,1,1). a(3,2) = 9 of the 2^4 = 64 pairs have overlap k = 2: (0,1,1)*(0,1,1) = (1,0,1)*(1,0,1) = (1,1,0)*(1,1,0) = (1,1,1)*(1,1,0) = (1,1,1)*(1,0,1) = (1,1,1)*(0,1,1) = (0,1,1)*(1,1,1) = (1,0,1)*(1,1,1) = (1,1,0)*(1,1,1) = 2.
For example, T(2,1)=6 since there are 6 subsets of {1,2,3,4} that have exactly 1 symmetric pair, namely, {1,4}, {2,3}, {1,2,3}, {1,2,4}, {1,3,4}, and {2,3,4}.
The present sequence formatted as a triangular array:
1
3 1
9 6 1
27 27 9 1
81 108 54 12 1
243 405 270 90 15 1
729 1458 1215 540 135 18 1
2187 5103 5103 2835 945 189 21 1
6561 17496 20412 13608 5670 1512 252 24 1
...
A013610 formatted as a triangular array:
1
1 3
1 6 9
1 9 27 27
1 12 54 108 81
1 15 90 270 405 243
1 18 135 540 1215 1458 729
1 21 189 945 2835 5103 5103 2187
1 24 252 1512 5670 13608 20412 17496 6561
...
A099097 formatted as a square array:
1 0 0 0 0 0 0 0 0 0 0 ...
3 1 0 0 0 0 0 0 0 0 ...
9 6 1 0 0 0 0 0 0 ...
27 27 9 1 0 0 0 0 ...
81 108 54 12 1 0 0 ...
243 405 270 90 15 1 ...
729 1458 1215 540 135 ...
2187 5103 5103 2835 ...
6561 17496 20412 ...
19683 59049 ...
59049 ...
Cf.
A000244,
A007318,
A013610,
A013610,
A099097,
A027471,
A027472,
A036216,
A036217,
A036219,
A036220,
A036221,
A036222,
A036223.
-
a027465 n k = a027465_tabl !! n !! k
a027465_row n = a027465_tabl !! n
a027465_tabl = iterate (\row ->
zipWith (+) (map (* 3) (row ++ [0])) (map (* 1) ([0] ++ row))) [1]
-- Reinhard Zumkeller, May 26 2013
-
for i from 0 to 12 do seq(binomial(i, j)*3^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Nov 25 2007
# Uses function PMatrix from A357368. Adds column 1, 0, 0, ... to the left.
PMatrix(10, n -> 3^(n-1)); # Peter Luschny, Oct 09 2022
-
t[n_, k_] := Binomial[n, k]*3^(n-k); Table[t[n, n-k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 19 2012 *)
-
{T(n, k) = polcoeff( (3 + x)^n, k)}; /* Michael Somos, Feb 14 2002 */
A038845
3-fold convolution of A000302 (powers of 4).
Original entry on oeis.org
1, 12, 96, 640, 3840, 21504, 114688, 589824, 2949120, 14417920, 69206016, 327155712, 1526726656, 7046430720, 32212254720, 146028888064, 657129996288, 2937757630464, 13056700579840, 57724360458240, 253987186016256, 1112705767309312, 4855443348258816
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..400
- Adam Ehrenberg, Joseph T. Iosue, Abhinav Deshpande, Dominik Hangleiter, and Alexey V. Gorshkov, The Second Moment of Hafnians in Gaussian Boson Sampling, arXiv:2403.13878 [quant-ph], 2024. See p. 30.
- Index entries for linear recurrences with constant coefficients, signature (12,-48,64).
Sequences similar to the form q^(n-2)*binomial(n, 2):
A000217 (q=1),
A001788 (q=2),
A027472 (q=3), this sequence (q=4),
A081135 (q=5),
A081136 (q=6),
A027474 (q=7),
A081138 (q=8),
A081139 (q=9),
A081140 (q=10),
A081141 (q=11),
A081142 (q=12),
A027476 (q=15).
-
List([0..30], n-> 4^n*Binomial(n+2,n) ); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+2, 2): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq((n+2)*(n+1)*4^n/2, n=0..30); # Zerinvary Lajos, Apr 25 2007
-
Table[4^n*Binomial[n+2,n], {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
-
a(n)=(n+2)*(n+1)<<(2*n-1) \\ Charles R Greathouse IV, Aug 21 2015
-
[4^(n-2)*binomial(n,2) for n in range(2, 30)] # Zerinvary Lajos, Mar 11 2009
A038846
4-fold convolution of A000302 (powers of 4); expansion of g.f. 1/(1-4*x)^4.
Original entry on oeis.org
1, 16, 160, 1280, 8960, 57344, 344064, 1966080, 10813440, 57671680, 299892736, 1526726656, 7633633280, 37580963840, 182536110080, 876173328384, 4161823309824, 19585050869760, 91396904058880, 423311976693760, 1947235092791296, 8901646138474496, 40462027902156800
Offset: 0
Cf.
A000302,
A000984,
A002457,
A002697,
A002802,
A006044,
A020918,
A038231,
A038845,
A057524,
A152818.
-
List([0..30], n-> 4^n*Binomial(n+3,3) ) # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+3, 3): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i, j)*4^(i-3), j =i-3), i=3..33); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+3,3)*4^n,n=0..30); # Zerinvary Lajos, May 19 2008
-
Table[4^n*Binomial[n+3,3], {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
-
Vec(1/(1-4*x)^4+O(x^30)) \\ Charles R Greathouse IV, Oct 03 2016
-
[lucas_number2(n, 4, 0)*binomial(n,3)/2^6 for n in range(3, 33)] # Zerinvary Lajos, Mar 11 2009
A020918
Expansion of 1/(1-4*x)^(7/2).
Original entry on oeis.org
1, 14, 126, 924, 6006, 36036, 204204, 1108536, 5819814, 29745716, 148728580, 730122120, 3528923580, 16830250920, 79342611480, 370265520240, 1712478031110, 7857252142740, 35794148650260
Offset: 0
-
List([0..30], n-> Binomial(2*n+6, n+3)*Binomial(n+3, 3)/20); # G. C. Greubel, Jul 20 2019
-
[Binomial(2*n+6, n+3)*Binomial(n+3, 3)/20: n in [0..30]]; // G. C. Greubel, Jul 20 2019
-
seq(binomial(2*n,n)*binomial(n,(n-3))/20, n=2..21); # Zerinvary Lajos, May 05 2007
seq(simplify(4^n*hypergeom([-n,-5/2], [1], 1)),n=0..18); # Peter Luschny, Apr 26 2016
-
CoefficientList[Series[1/(1-4x)^(7/2), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 04 2013 *)
-
vector(30, n, n--; binomial(2*n+6, n+3)*binomial(n+3, 3)/20 ) \\ G. C. Greubel, Jul 20 2019
-
[binomial(2*n+6, n+3)*binomial(n+3, 3)/20 for n in (0..30)] # G. C. Greubel, Jul 20 2019
A053464
a(n) = n*5^(n-1).
Original entry on oeis.org
0, 1, 10, 75, 500, 3125, 18750, 109375, 625000, 3515625, 19531250, 107421875, 585937500, 3173828125, 17089843750, 91552734375, 488281250000, 2593994140625, 13732910156250, 72479248046875, 381469726562500
Offset: 0
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
[n*(5^(n-1)): n in [0..30]]; // Vincenzo Librandi, Jun 09 2011
-
Join[{a=0,b=1},Table[c=10*b-25*a;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 27 2011 *)
Table[n*5^(n-1),{n,0,20}] (* or *) LinearRecurrence[{10,-25},{0,1},30] (* Harvey P. Dale, Jul 22 2014 *)
-
{a(n) = n*5^(n-1)}; /* Michael Somos, Sep 12 2005 */
-
[lucas_number1(n,10,25) for n in range(0, 21)] # Zerinvary Lajos, Apr 26 2009
A040075
5-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^5.
Original entry on oeis.org
1, 20, 240, 2240, 17920, 129024, 860160, 5406720, 32440320, 187432960, 1049624576, 5725224960, 30534533120, 159719096320, 821412495360, 4161823309824, 20809116549120, 102821517066240, 502682972323840, 2434043865989120, 11683410556747776, 55635288365465600
Offset: 0
-
List([0..30], n-> 4^n*Binomial(n+4, 4)); # G. C. Greubel, Jul 20 2019
-
[4^n*Binomial(n+4, 4): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
-
seq(seq(binomial(i, j)*4^(i-4), j =i-4), i=4..22); # Zerinvary Lajos, Dec 03 2007
seq(binomial(n+4,4)*4^n,n=0..30); # Zerinvary Lajos, May 19 2008
spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, Z, Z, Z, B, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/24, n=4..34); # Zerinvary Lajos, Apr 05 2009
-
Table[Binomial[n+4,4]*4^n, {n,0,30}] (* Michael De Vlieger, Aug 21 2015 *)
-
vector(30, n, n--; 4^n*binomial(n+4, 4)) \\ G. C. Greubel, Jul 20 2019
-
[lucas_number2(n, 4, 0)*binomial(n,4)/2^8 for n in range(4, 34)] # Zerinvary Lajos, Mar 11 2009
A061594
Number of ways to place 3n nonattacking kings on a 6 X 2n chessboard.
Original entry on oeis.org
1, 32, 408, 3600, 26040, 166368, 976640, 5392704, 28432288, 144605184, 714611200, 3449705600, 16333065216, 76081271168, 349524164224, 1586790140800, 7130144209024, 31752978219904, 140298397039232, 615604372260736
Offset: 0
Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 22 2001
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- D. E. Knuth, Nonattacking kings on a chessboard, 1994.
- Vaclav Kotesovec, Number of ways of placing non-attacking queens and kings on boards of various sizes [_Vaclav Kotesovec_, Feb 06 2010]
- H. S. Wilf, The problem of the kings, Elec. J. Combin. 2, 1995.
- Index entries for linear recurrences with constant coefficients, signature (19, -148, 604, -1364, 1644, -928, 192).
Showing 1-10 of 49 results.
Comments