cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A018807 Number of ways to place n^2 nonattacking kings on 2n X 2n chessboard.

Original entry on oeis.org

1, 4, 79, 3600, 281571, 32572756, 5109144543, 1027533353168, 254977173389319, 75925129079783308, 26568150968269086211, 10749154284380665611224, 4963704194366362387891227, 2588716234142991968960920692, 1511548995678989691821551648635
Offset: 0

Views

Author

Keywords

Comments

Rotations and reflections are considered distinct.
Also, number of ways to tile a (2n+1) X (2n+1) board with n^2 2 X 2 tiles and 4n+1 1 X 1 tiles, rotations and reflections counted as distinct. - David W. Wilson, Aug 18 2011
Number of maximum independent vertex sets in the 2n X 2n king graph. - Eric W. Weisstein, Jun 20 2017

Crossrefs

Formula

Asymptotic (M. Larsen, 1995): log(a(n)) = 2n*log(n) - 2n*log(2) + O(n^(4/5)*log(n)).

Extensions

a(0) added by Geoffrey H. Morley, Feb 06 2013

A350819 Array read by antidiagonals: T(m,n) is the number of maximum independent sets in the 2m X 2n king graph.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 79, 32, 1, 1, 80, 408, 408, 80, 1, 1, 192, 1847, 3600, 1847, 192, 1, 1, 448, 7698, 26040, 26040, 7698, 448, 1, 1, 1024, 30319, 166368, 281571, 166368, 30319, 1024, 1, 1, 2304, 114606, 976640, 2580754, 2580754, 976640, 114606, 2304, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Comments

Number of ways to tile a (2m+1) X (2n+1) board with m*n 2 X 2 tiles and 2m+2n+1 1 X 1 tiles.
For m,n > 0, T(m,n) is the number of minimum dominating sets in the (3m-1) X (3n-1) king graph.

Examples

			Table begins:
=============================================
m\n | 0   1    2      3       4        5
----+----------------------------------------
  0 | 1   1    1      1       1        1 ...
  1 | 1   4   12     32      80      192 ...
  2 | 1  12   79    408    1847     7698 ...
  3 | 1  32  408   3600   26040   166368 ...
  4 | 1  80 1847  26040  281571  2580754 ...
  5 | 1 192 7698 166368 2580754 32572756 ...
  ...
		

Crossrefs

Formula

T(m,n) = T(n,m).
T(m,n) = A350818(2*m, 2*n) = A350815(3*m-1, 3*n-1).

A061593 Number of ways to place 2n nonattacking kings on a 4 X 2n chessboard.

Original entry on oeis.org

12, 79, 408, 1847, 7698, 30319, 114606, 419933, 1501674, 5266069, 18174084, 61892669, 208424880, 695179339, 2299608732, 7552444115, 24648046806, 79994460139, 258339007890, 830619734681, 2660070154542, 8488515938929, 27000079296648, 85629004867577
Offset: 1

Views

Author

Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), May 22 2001

Keywords

Crossrefs

Column k=2 of A350819.

Programs

  • Magma
    [(17*n-109)*3^n+2*Fibonacci(2*n+10): n in [1..30]]; // Vincenzo Librandi, Jul 12 2011
  • Maple
    with(combinat): A061593:=n->(17*n-109)*3^n+2*fibonacci(2*n+10): seq(A061593(n), n=1..30); # Wesley Ivan Hurt, Nov 08 2014
  • Mathematica
    Table[(17 n - 109)*3^n + 2 Fibonacci[2 n + 10], {n, 30}] (* Wesley Ivan Hurt, Nov 08 2014 *)
    CoefficientList[Series[x (12-29x+33x^2-9x^3)/((1-3x+x^2)(1-3x)^2),{x,0,30}],x] (* or *) LinearRecurrence[{9,-28,33,-9},{0,12,79,408,1847},30] (* Harvey P. Dale, Dec 20 2021 *)

Formula

G.f.: x*(12-29*x+33*x^2-9*x^3)/((1-3*x+x^2)*(1-3*x)^2).
a(n) = 9*a(n-1) - 28*a(n-2) + 33*a(n-3) - 9*a(n-4); a(1)=12, a(2)=79, a(3)=408, a(4)=1847.
a(n) = (17*n-109)*3^n + 2*Fibonacci(2*n+10).
a(n) = 17*A027471(n+2) - 126*A000244(n) + A025169(n+4).

A173782 Number of ways to place 4n nonattacking kings on an 8 X 2n chessboard.

Original entry on oeis.org

80, 1847, 26040, 281571, 2580754, 21137959, 159636030, 1134127305, 7683664202, 50123713793, 317076250136, 1955475353217, 11806000507544, 70004699407151, 408747986045656, 2355077855615435, 13413115039118042, 75623103424916527
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2010

Keywords

Crossrefs

Column k=4 of A350819.

Programs

  • Mathematica
    CoefficientList[Series[(22500 x^16 - 382125 x^15 + 2723005 x^14 - 10917322 x^13 + 27938661 x^12 - 48873227 x^11 + 60780149 x^10 - 54895129 x^9 + 36368733 x^8 - 17776175 x^7 + 6499001 x^6 - 1854479 x^5 + 446565 x^4 - 94300 x^3 + 15732 x^2 - 1673 x + 80) / ((1 - x) (x^2 - 4 x + 1) (x^3 - 6 x^2 + 5 x - 1) (4 x - 1) (5 x - 1)^2 (3 x^2 - 5 x + 1)^2 (5 x^2 - 5 x + 1)^2),{x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)

Formula

G.f.: x*(22500*x^16 -382125*x^15 +2723005*x^14 -10917322*x^13 +27938661*x^12 -48873227*x^11 +60780149*x^10 -54895129*x^9 +36368733*x^8 -17776175*x^7 +6499001*x^6 -1854479*x^5+446565*x^4 -94300*x^3 +15732*x^2 -1673*x+80) / ((1-x) *(x^2-4*x+1) *(x^3-6*x^2+5*x-1) *(4*x-1) *(5*x-1)^2 *(3*x^2-5*x+1)^2 *(5*x^2-5*x+1)^2).
Recurrence: a(n) = 44a(n-1) -887a(n-2) +10855a(n-3) -90083a(n-4) +536398a(n-5) -2365292a(n-6) +7860674a(n-7) -19852652a(n-8) +38152568a(n-9) -55523880a(n-10) +60518766a(n-11) -48502595a(n-12) +27783210a(n-13) -10888525a(n-14) +2721025a(n-15) -382125a(n-16) +22500a(n-17), n>17.
a(n) = (-12505804889/302760 +7963567/2610*n)*5^n +3872/3*4^n -1/24 +(135343*sqrt(3)/18 -234421/18)*(2 -sqrt(3))^n -(135343*sqrt(3)/18 +234421/18)*(2 +sqrt(3))^n +(33301/5 -74461*sqrt(5)/25 +(141*sqrt(5)/25 -63/5)*n)*((5 -sqrt(5))/2)^n +(74461*sqrt(5)/25 +33301/5 - (141*sqrt(5)/25 + 63/5)*n)*((5 +sqrt(5))/2)^n + (4306740/169 - 1194474*sqrt(13)/169 + (139103/117 - 501541*sqrt(13)/1521)*n)*((5 -sqrt(13))/2)^n +(1194474*sqrt(13)/169 +4306740/169 +(501541*sqrt(13)/1521 +139103/117)*n)*((5 +sqrt(13))/2)^n +72*(b*(3504697*c - 11380560) -11380560*c +36953816)/(142129*(a - b)*(a - c))*a^n +72*(a*(3504697*c - 11380560) - 8*(1422570*c - 4619227))/(142129*(a - b)*(c - b))*b^n +72*(a*(3504697*b - 11380560) -8*(1422570*b - 4619227))/(142129*(a - c)*(b - c))*c^n, where: a=2-2*sin(Pi/14), b=2+2*sin(3*Pi/14), c=2-2*cos(Pi/7). - Vaclav Kotesovec, added Mar 01 2010, updated Mar 29 2010.

A173783 Number of ways to place 5n nonattacking kings on a 10 X 2n chessboard.

Original entry on oeis.org

192, 7698, 166368, 2580754, 32572756, 357365350, 3544192112, 32580145116, 282359109140, 2335042206624, 18589546217696, 143422674213726, 1077891352444220, 7923134615854816, 57146364209686016, 405497952834408698
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2010

Keywords

Crossrefs

Column k=5 of A350819.

Programs

  • Mathematica
    CoefficientList[Series[2 (292626432 x^30 - 7695378432 x^29 + 94084706304 x^28 - 712519981056 x^27 + 3757888797696 x^26 - 14715718076160 x^25 + 44556058968960 x^24 - 107273952716256 x^23 + 209645023363168 x^22 - 337824014576768 x^21 + 454329405135504 x^20 - 514643686425920 x^19 + 494203416082160 x^18 - 403847150294172 x^17 + 281135354205764 x^16 - 166453721883480 x^15 + 83456844800670 x^14 - 35182845104124 x^13 + 12345883162136 x^12 - 3557728594620 x^11 + 827346101101 x^10 - 152042822189 x^9 + 21726065190 x^8 - 2499103126 x^7 + 289877178 x^6 - 45817212 x^5 + 7810422 x^4 - 1012942 x^3 + 86355 x^2 - 4311 x + 96) / ((1 - 2 x) (x^2 - 4 x + 1) (4 x - 1) (6 x - 1)^2 (2 x^2 - 4 x + 1) (2 x^2 - 5 x + 1) (4 x^2 - 6 x + 1)^2 (6 x^2 - 6 x + 1)^2 (7 x^2 - 6 x + 1)^2 (2 x^3 - 8 x^2 + 6 x - 1) (3 x^3 - 9 x^2 + 6 x - 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)

Formula

G.f.: 2*x*(292626432*x^30 -7695378432*x^29 +94084706304*x^28 -712519981056*x^27 +3757888797696*x^26 -14715718076160*x^25 +44556058968960*x^24 -107273952716256*x^23 +209645023363168*x^22 -337824014576768*x^21 +454329405135504*x^20 -514643686425920*x^19 +494203416082160*x^18 -403847150294172*x^17 +281135354205764*x^16 -166453721883480*x^15 +83456844800670*x^14 -35182845104124*x^13 +12345883162136*x^12 -3557728594620*x^11 +827346101101*x^10 -152042822189*x^9 +21726065190*x^8 -2499103126*x^7 +289877178*x^6 -45817212*x^5 +7810422*x^4 -1012942*x^3 +86355*x^2 -4311*x+96) / ((1-2*x) *(x^2-4*x+1) *(4*x-1) *(6*x-1)^2 *(2*x^2-4*x+1) *(2*x^2-5*x+1) *(4*x^2-6*x+1)^2 *(6*x^2-6*x+1)^2 *(7*x^2-6*x+1)^2 *(2*x^3-8*x^2+6*x-1) *(3*x^3-9*x^2+6*x-1)^2).
Recurrence: a(n) = 85a(n-1) -3441a(n-2) +88303a(n-3) -1613002a(n-4) +22327010a(n-5) -243429637a(n-6) +2145452227a(n-7) -15565947848a(n-8) +94202823084a(n-9) -480152808502a(n-10) +2075863416838a(n-11) -7651361422835a(n-12) +24128330540449a(n-13) -65240466585284a(n-14) +151411770874148a(n-15) -301613628545814a(n-16) +515173613407544a(n-17) -753006145475828a(n-18) +939001403456656a(n-19) -994821988961592a(n-20) +890558910282768a(n-21) -668920434927504a(n-22) +417832289937792a(n-23) -214574645977920a(n-24) +89258591798784a(n-25) -29486236792320a(n-26) +7526493775872a(n-27) -1426182018048a(n-28) +188221833216a(n-29) -15390756864a(n-30) +585252864a(n-31), n>31.

A174154 Number of ways to place 6n nonattacking kings on a 12 x 2n chessboard.

Original entry on oeis.org

1, 448, 30319, 976640, 21137959, 357365350, 5109144543, 64737165162, 749160010737, 8080813574550, 82425144219429, 803491953235264, 7545414941610145, 68680800264413920, 608889093898882615, 5278006575696293456, 44873569636443901967, 375159494582050088590, 3090799708762482416287
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 10 2010

Keywords

Crossrefs

Column k=6 of A350819.

Extensions

More terms from Jinyuan Wang, Feb 26 2020
a(0)=1 prepended by Andrew Howroyd, Mar 26 2023

A174558 Number of ways to place 8n nonattacking kings on a 16 x 2n chessboard.

Original entry on oeis.org

2304, 419933, 28432288, 1134127305, 32580145116, 749160010737, 14677177838054, 254977173389319, 4035559337688370, 59315924213143597, 821112680030028632, 10819171744710664383, 136800806311499633208, 1670597119210336446533, 19804685547188544317522, 228865023358344707514899, 2586924156960003793687130, 28681715460054576813151389, 312656761422008821513384848, 3357651442822195404605813501
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 29 2010

Keywords

Crossrefs

Formula

Asymptotic formula for number of ways to place m x n nonattacking kings on a 2m x 2n chessboard (this case is m=8): f(m,n) ~ k(m)*n*(m+1)^n
First values of k(m):
k(1)=1,
k(2)=17,
k(3)=231,
k(4)=3051.17509,
k(5)=40881.99638,
k(6)=563050.92363,
k(7)=8008508.28858,
k(8)=117833087.45133
k(9)=1794306724.77472
k(10)=28276454469.76459
k(11)=461049875818.05305
k(12)=7775513990776.97046
k(13)=135589372611110.17367
k(14)=2443990803097108.58764
k(15)=45522076785406201.22572
k(16)=875939597341977670.66777
k(17)=17407856624734801679.11613
k(18)=357216046100723515478.42809
k(19)=7567101689641721175327.80272

A174155 Number of ways to place 7n nonattacking kings on a 14 x 2n chessboard.

Original entry on oeis.org

1, 1024, 114606, 5392704, 159636030, 3544192112, 64737165162, 1027533353168, 14677177838054, 193194265398240, 2383116363555182, 27889602664055396, 312546900470579954, 3378090945290324892, 35412239480510055916, 361670315347336810428, 3611858972942315054336, 35375586671457852212944
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 10 2010

Keywords

Crossrefs

Extensions

More terms from Jinyuan Wang, Feb 26 2020
a(0)=1 prepended by Andrew Howroyd, Mar 26 2023

A194645 Number of ways to place 3n nonattacking kings on a 6 X 2n cylindrical chessboard.

Original entry on oeis.org

32, 100, 344, 1220, 4392, 15988, 58776, 218052, 815816, 3076180, 11682296, 44653028, 171670440, 663421684, 2575592664, 10039703172, 39273896840, 154109956756, 606353229752, 2391296071460, 9449664931176, 37407140524084, 148300497571992, 588693691298244
Offset: 1

Views

Author

Vaclav Kotesovec, Aug 31 2011

Keywords

Comments

This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 6, number of rows = 2n).

Crossrefs

Programs

  • Mathematica
    Table[FullSimplify[2*4^n+2*3^n+4*(2+Sqrt[2])^n+4*(2-Sqrt[2])^n+2], {n,25}]
    LinearRecurrence[{12,-53,104,-86,24},{32,100,344,1220,4392},30] (* Harvey P. Dale, Jul 25 2016 *)

Formula

a(n) = 2*4^n + 2*3^n + 4*(2+sqrt(2))^n + 4*(2-sqrt(2))^n + 2.
Recurrence: a(n) = 24*a(n-5) - 86*a(n-4) + 104*a(n-3) - 53*a(n-2) + 12*a(n-1).
G.f.: -2*(7-68*x+229*x^2-308*x^3+134*x^4)/((-1+x)*(-1+3*x)*(-1+4*x)*(1-4*x+2*x^2)).

A322284 Number of nonequivalent ways to place n nonattacking kings on a 2 X 2n chessboard under all symmetry operations of the rectangle.

Original entry on oeis.org

1, 4, 8, 22, 48, 116, 256, 584, 1280, 2832, 6144, 13344, 28672, 61504, 131072, 278656, 589824, 1245440, 2621440, 5505536, 11534336, 24118272, 50331648, 104859648, 218103808, 452988928, 939524096, 1946165248, 4026531840, 8321515520, 17179869184, 35433512960
Offset: 1

Views

Author

Anton Nikonov, Dec 02 2018

Keywords

Comments

A maximum of n nonattacking kings can be placed on a 2 X 2n chessboard.
Number of nonequivalent ways of placing n 2 X 2 tiles in an 3 X (2n+1) rectangle under all symmetry operations of the rectangle. - Andrew Howroyd, Dec 16 2018
Number of ways to choose modulo symmetry n vertices from a 1 X (2n-1) square grid with distances > sqrt(2) between the vertices. (Consider the interior 1 X (2*n-1) square grid of the 3 X (2n+1) square grid, or the square grid with the midpoints of the squares of the 2 X 2n chessboard as vertices.) - Wolfdieter Lang, Feb 07 2019

Examples

			For n = 2 there are a(2) = 4 distinct solutions from 12 that will not be repeated by all possible turns and reflections.
1.                  2.                 3.                 4.
-----------------   -----------------  -----------------  -----------------
| * |   | * |   |   | * |   |   | * |  | * |   |   |   |  | * |   |   |   |
-----------------   -----------------  -----------------  -----------------
|   |   |   |   |   |   |   |   |   |  |   |   | * |   |  |   |   |   | * |
-----------------   -----------------  -----------------  -----------------
		

Crossrefs

Programs

  • Maple
    seq(coeff(series(x*(1-6*x^2+6*x^3)/((1-2*x)^2*(1-2*x^2)),x,n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Dec 21 2018
  • PARI
    Vec(x*(1 - 6*x^2 + 6*x^3) / ((1 - 2*x)^2*(1 - 2*x^2)) + O(x^40)) \\ Colin Barker, Dec 21 2018

Formula

a(n) = (n+1)*2^(n-2) + (1 + (-1)^n)^(n/2 - 1) for n > 1.
a(n) = A238009(2*n+1, n). - Andrew Howroyd, Dec 16 2018
From Colin Barker, Dec 21 2018: (Start)
G.f.: x*(1 - 6*x^2 + 6*x^3) / ((1 - 2*x)^2*(1 - 2*x^2)).
a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 8*a(n-4) for n>4. (End)
E.g.f.: (exp(2*x)*(1 + 2*x) + 2*cosh(sqrt(2)*x) - 3)/4. - Stefano Spezia, May 14 2023
Showing 1-10 of 12 results. Next