Anton Nikonov has authored 3 sequences.
A321614
Number of nonequivalent ways to place 2n nonattacking kings on a 4 X 2n chessboard under all symmetry operations of the rectangle.
Original entry on oeis.org
1, 4, 23, 106, 473, 1939, 7618, 28703, 105112, 375597, 1316944, 4544124, 15474559, 52108212, 173799309, 574908646, 1888125243, 6162032375, 19998659760, 64584817367, 207655073310, 665017743665
Offset: 0
A322284
Number of nonequivalent ways to place n nonattacking kings on a 2 X 2n chessboard under all symmetry operations of the rectangle.
Original entry on oeis.org
1, 4, 8, 22, 48, 116, 256, 584, 1280, 2832, 6144, 13344, 28672, 61504, 131072, 278656, 589824, 1245440, 2621440, 5505536, 11534336, 24118272, 50331648, 104859648, 218103808, 452988928, 939524096, 1946165248, 4026531840, 8321515520, 17179869184, 35433512960
Offset: 1
For n = 2 there are a(2) = 4 distinct solutions from 12 that will not be repeated by all possible turns and reflections.
1. 2. 3. 4.
----------------- ----------------- ----------------- -----------------
| * | | * | | | * | | | * | | * | | | | | * | | | |
----------------- ----------------- ----------------- -----------------
| | | | | | | | | | | | | * | | | | | | * |
----------------- ----------------- ----------------- -----------------
-
seq(coeff(series(x*(1-6*x^2+6*x^3)/((1-2*x)^2*(1-2*x^2)),x,n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Dec 21 2018
-
Vec(x*(1 - 6*x^2 + 6*x^3) / ((1 - 2*x)^2*(1 - 2*x^2)) + O(x^40)) \\ Colin Barker, Dec 21 2018
A319096
Number of nonequivalent ways to place n^2 nonattacking kings on a 2n X 2n chessboard under all symmetry operations of the square.
Original entry on oeis.org
1, 14, 459, 35312, 4072108, 638653285, 128441726634, 31872148398195, 9490641145219266, 3321018871480028710
Offset: 1
For n = 2 there are a(2) = 14 distinct solutions from 79 that will not be repeated at all possible turns and reflections.
------------
1. 2.
_________________ _________________
| * | | * | | | * | | * | |
| | | | | | | | | |
| * | | * | | | * | | | * |
| | | | | | | | | |
------------
3. 4.
_________________ _________________
| * | | * | | | * | | * | |
| | | | | | | | | |
| * | | | | | | * | | * |
| | | | * | | | | | |
------------
5. 6.
_________________ _________________
| * | | * | | | * | | * | |
| | | | | | | | | |
| | * | | | | | | * | |
| | | | * | | * | | | |
------------
7. 8.
_________________ _________________
| * | | * | | | * | | * | |
| | | | | | | | | |
| | | | * | | | | | |
| * | | | | | * | | * | |
------------
9. 10.
_________________ _________________
| * | | * | | | * | | * | |
| | | | | | | | | |
| | | | | | | | | * |
| * | | | * | | | * | | |
------------
11. 12.
_________________ _________________
| * | | * | | | * | | | * |
| | | | | | | | | |
| | | | | | | * | | |
| | * | | * | | | | | * |
------------
13. 14.
_________________ _________________
| * | | | * | | | * | | |
| | | | | | | | | * |
| | | | | | * | | | |
| * | | | * | | | | * | |
------------
Cf.
A018807 (rotations and reflections considered distinct).
Cf.
A137432 (on cylindrical chessboard).
Comments