cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Anton Nikonov

Anton Nikonov's wiki page.

Anton Nikonov has authored 3 sequences.

A321614 Number of nonequivalent ways to place 2n nonattacking kings on a 4 X 2n chessboard under all symmetry operations of the rectangle.

Original entry on oeis.org

1, 4, 23, 106, 473, 1939, 7618, 28703, 105112, 375597, 1316944, 4544124, 15474559, 52108212, 173799309, 574908646, 1888125243, 6162032375, 19998659760, 64584817367, 207655073310, 665017743665
Offset: 0

Author

Anton Nikonov, Dec 19 2018

Keywords

Comments

A maximum of 2n nonattacking kings can be placed on a 4 X 2n chessboard.
Number of nonequivalent ways of placing 2n 2 X 2 tiles in an 5 X (2n+1) rectangle under all symmetry operations of the rectangle. - Andrew Howroyd, Dec 21 2018

Formula

a(n) = A231145(2*n+1, 2n).
Conjectures from Colin Barker, Dec 22 2018: (Start)
G.f.: (1 - 2*x)*(1 - 6*x + 17*x^2 - 18*x^3 - 2*x^4 + 7*x^5 + 6*x^6 - 3*x^7) / ((1 - x)^2*(1 - 3*x)^2*(1 - 3*x + x^2)*(1 - x - x^2)*(1 - 3*x^2)).
a(n) = 12*a(n-1) - 54*a(n-2) + 98*a(n-3) + 17*a(n-4) - 346*a(n-5) + 505*a(n-6) - 210*a(n-7) - 120*a(n-8) + 126*a(n-9) - 27*a(n-10) for n>9.
(End)

A322284 Number of nonequivalent ways to place n nonattacking kings on a 2 X 2n chessboard under all symmetry operations of the rectangle.

Original entry on oeis.org

1, 4, 8, 22, 48, 116, 256, 584, 1280, 2832, 6144, 13344, 28672, 61504, 131072, 278656, 589824, 1245440, 2621440, 5505536, 11534336, 24118272, 50331648, 104859648, 218103808, 452988928, 939524096, 1946165248, 4026531840, 8321515520, 17179869184, 35433512960
Offset: 1

Author

Anton Nikonov, Dec 02 2018

Keywords

Comments

A maximum of n nonattacking kings can be placed on a 2 X 2n chessboard.
Number of nonequivalent ways of placing n 2 X 2 tiles in an 3 X (2n+1) rectangle under all symmetry operations of the rectangle. - Andrew Howroyd, Dec 16 2018
Number of ways to choose modulo symmetry n vertices from a 1 X (2n-1) square grid with distances > sqrt(2) between the vertices. (Consider the interior 1 X (2*n-1) square grid of the 3 X (2n+1) square grid, or the square grid with the midpoints of the squares of the 2 X 2n chessboard as vertices.) - Wolfdieter Lang, Feb 07 2019

Examples

			For n = 2 there are a(2) = 4 distinct solutions from 12 that will not be repeated by all possible turns and reflections.
1.                  2.                 3.                 4.
-----------------   -----------------  -----------------  -----------------
| * |   | * |   |   | * |   |   | * |  | * |   |   |   |  | * |   |   |   |
-----------------   -----------------  -----------------  -----------------
|   |   |   |   |   |   |   |   |   |  |   |   | * |   |  |   |   |   | * |
-----------------   -----------------  -----------------  -----------------
		

Crossrefs

Programs

  • Maple
    seq(coeff(series(x*(1-6*x^2+6*x^3)/((1-2*x)^2*(1-2*x^2)),x,n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Dec 21 2018
  • PARI
    Vec(x*(1 - 6*x^2 + 6*x^3) / ((1 - 2*x)^2*(1 - 2*x^2)) + O(x^40)) \\ Colin Barker, Dec 21 2018

Formula

a(n) = (n+1)*2^(n-2) + (1 + (-1)^n)^(n/2 - 1) for n > 1.
a(n) = A238009(2*n+1, n). - Andrew Howroyd, Dec 16 2018
From Colin Barker, Dec 21 2018: (Start)
G.f.: x*(1 - 6*x^2 + 6*x^3) / ((1 - 2*x)^2*(1 - 2*x^2)).
a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 8*a(n-4) for n>4. (End)
E.g.f.: (exp(2*x)*(1 + 2*x) + 2*cosh(sqrt(2)*x) - 3)/4. - Stefano Spezia, May 14 2023

A319096 Number of nonequivalent ways to place n^2 nonattacking kings on a 2n X 2n chessboard under all symmetry operations of the square.

Original entry on oeis.org

1, 14, 459, 35312, 4072108, 638653285, 128441726634, 31872148398195, 9490641145219266, 3321018871480028710
Offset: 1

Author

Anton Nikonov, Dec 21 2018

Keywords

Comments

A maximum of n^2 nonattacking kings may be placed on a 2n X 2n chessboard.

Examples

			For n = 2 there are a(2) = 14 distinct solutions from 79 that will not be repeated at all possible turns and reflections.
------------
1.                  2.
_________________   _________________
| * |   | * |   |   | * |   | * |   |
|   |   |   |   |   |   |   |   |   |
| * |   | * |   |   | * |   |   | * |
|   |   |   |   |   |   |   |   |   |
------------
3.                  4.
_________________   _________________
| * |   | * |   |   | * |   | * |   |
|   |   |   |   |   |   |   |   |   |
| * |   |   |   |   |   | * |   | * |
|   |   |   | * |   |   |   |   |   |
------------
5.                  6.
_________________   _________________
| * |   | * |   |   | * |   | * |   |
|   |   |   |   |   |   |   |   |   |
|   | * |   |   |   |   |   | * |   |
|   |   |   | * |   | * |   |   |   |
------------
7.                  8.
_________________   _________________
| * |   | * |   |   | * |   | * |   |
|   |   |   |   |   |   |   |   |   |
|   |   |   | * |   |   |   |   |   |
| * |   |   |   |   | * |   | * |   |
------------
9.                  10.
_________________   _________________
| * |   | * |   |   | * |   | * |   |
|   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   |   |   | * |
| * |   |   | * |   |   | * |   |   |
------------
11.                 12.
_________________   _________________
| * |   | * |   |   | * |   |   | * |
|   |   |   |   |   |   |   |   |   |
|   |   |   |   |   |   | * |   |   |
|   | * |   | * |   |   |   |   | * |
------------
13.                 14.
_________________   _________________
| * |   |   | * |   |   | * |   |   |
|   |   |   |   |   |   |   |   | * |
|   |   |   |   |   | * |   |   |   |
| * |   |   | * |   |   |   | * |   |
------------
		

Crossrefs

Cf. A018807 (rotations and reflections considered distinct).
Cf. A137432 (on cylindrical chessboard).

Formula

a(n) = A236679(2n+1, n^2).

Extensions

a(4)-a(10) from Andrew Howroyd, Dec 21 2018