A322284 Number of nonequivalent ways to place n nonattacking kings on a 2 X 2n chessboard under all symmetry operations of the rectangle.
1, 4, 8, 22, 48, 116, 256, 584, 1280, 2832, 6144, 13344, 28672, 61504, 131072, 278656, 589824, 1245440, 2621440, 5505536, 11534336, 24118272, 50331648, 104859648, 218103808, 452988928, 939524096, 1946165248, 4026531840, 8321515520, 17179869184, 35433512960
Offset: 1
Examples
For n = 2 there are a(2) = 4 distinct solutions from 12 that will not be repeated by all possible turns and reflections. 1. 2. 3. 4. ----------------- ----------------- ----------------- ----------------- | * | | * | | | * | | | * | | * | | | | | * | | | | ----------------- ----------------- ----------------- ----------------- | | | | | | | | | | | | | * | | | | | | * | ----------------- ----------------- ----------------- -----------------
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..3280
- Index entries for linear recurrences with constant coefficients, signature (4,-2,-8,8).
Programs
-
Maple
seq(coeff(series(x*(1-6*x^2+6*x^3)/((1-2*x)^2*(1-2*x^2)),x,n+1), x, n), n = 1 .. 35); # Muniru A Asiru, Dec 21 2018
-
PARI
Vec(x*(1 - 6*x^2 + 6*x^3) / ((1 - 2*x)^2*(1 - 2*x^2)) + O(x^40)) \\ Colin Barker, Dec 21 2018
Formula
a(n) = (n+1)*2^(n-2) + (1 + (-1)^n)^(n/2 - 1) for n > 1.
a(n) = A238009(2*n+1, n). - Andrew Howroyd, Dec 16 2018
From Colin Barker, Dec 21 2018: (Start)
G.f.: x*(1 - 6*x^2 + 6*x^3) / ((1 - 2*x)^2*(1 - 2*x^2)).
a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 8*a(n-4) for n>4. (End)
E.g.f.: (exp(2*x)*(1 + 2*x) + 2*cosh(sqrt(2)*x) - 3)/4. - Stefano Spezia, May 14 2023
Comments