cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A137432 Number of ways to place n^2 nonattacking kings on a 2n X 2n cylindrical chessboard.

Original entry on oeis.org

1, 4, 32, 344, 4460, 66532, 1118398, 20984924, 437500380, 10105541204, 257860425672, 7241521734020, 222770819826574, 7466859257161488, 271156951835070930, 10609740515840572076, 444982726973034212924, 19911203110764903275188, 946564783226311159219150
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2011

Keywords

Crossrefs

Formula

Conjecture: limit of a(n+1)/(n*a(n)) as n->infinity is e.
a(n) ~ c * n^n, where c = 2*exp(1)*(exp(1) - 1)^2 / (exp(1) - 2)^2 = 31.1116835720490503682643922791052352237386275089... - Vaclav Kotesovec, Jul 29 2023, updated Mar 18 2024

Extensions

a(11)-a(12) from Vaclav Kotesovec, Sep 08 2011
a(13)-a(27) from Alex V. Breger, Sep 10 2011
a(28)-a(31) from Alex V. Breger, Sep 12 2011
a(0)=1 prepended by Andrew Howroyd, Mar 26 2023

A350819 Array read by antidiagonals: T(m,n) is the number of maximum independent sets in the 2m X 2n king graph.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 79, 32, 1, 1, 80, 408, 408, 80, 1, 1, 192, 1847, 3600, 1847, 192, 1, 1, 448, 7698, 26040, 26040, 7698, 448, 1, 1, 1024, 30319, 166368, 281571, 166368, 30319, 1024, 1, 1, 2304, 114606, 976640, 2580754, 2580754, 976640, 114606, 2304, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Comments

Number of ways to tile a (2m+1) X (2n+1) board with m*n 2 X 2 tiles and 2m+2n+1 1 X 1 tiles.
For m,n > 0, T(m,n) is the number of minimum dominating sets in the (3m-1) X (3n-1) king graph.

Examples

			Table begins:
=============================================
m\n | 0   1    2      3       4        5
----+----------------------------------------
  0 | 1   1    1      1       1        1 ...
  1 | 1   4   12     32      80      192 ...
  2 | 1  12   79    408    1847     7698 ...
  3 | 1  32  408   3600   26040   166368 ...
  4 | 1  80 1847  26040  281571  2580754 ...
  5 | 1 192 7698 166368 2580754 32572756 ...
  ...
		

Crossrefs

Formula

T(m,n) = T(n,m).
T(m,n) = A350818(2*m, 2*n) = A350815(3*m-1, 3*n-1).

A173782 Number of ways to place 4n nonattacking kings on an 8 X 2n chessboard.

Original entry on oeis.org

80, 1847, 26040, 281571, 2580754, 21137959, 159636030, 1134127305, 7683664202, 50123713793, 317076250136, 1955475353217, 11806000507544, 70004699407151, 408747986045656, 2355077855615435, 13413115039118042, 75623103424916527
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2010

Keywords

Crossrefs

Column k=4 of A350819.

Programs

  • Mathematica
    CoefficientList[Series[(22500 x^16 - 382125 x^15 + 2723005 x^14 - 10917322 x^13 + 27938661 x^12 - 48873227 x^11 + 60780149 x^10 - 54895129 x^9 + 36368733 x^8 - 17776175 x^7 + 6499001 x^6 - 1854479 x^5 + 446565 x^4 - 94300 x^3 + 15732 x^2 - 1673 x + 80) / ((1 - x) (x^2 - 4 x + 1) (x^3 - 6 x^2 + 5 x - 1) (4 x - 1) (5 x - 1)^2 (3 x^2 - 5 x + 1)^2 (5 x^2 - 5 x + 1)^2),{x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)

Formula

G.f.: x*(22500*x^16 -382125*x^15 +2723005*x^14 -10917322*x^13 +27938661*x^12 -48873227*x^11 +60780149*x^10 -54895129*x^9 +36368733*x^8 -17776175*x^7 +6499001*x^6 -1854479*x^5+446565*x^4 -94300*x^3 +15732*x^2 -1673*x+80) / ((1-x) *(x^2-4*x+1) *(x^3-6*x^2+5*x-1) *(4*x-1) *(5*x-1)^2 *(3*x^2-5*x+1)^2 *(5*x^2-5*x+1)^2).
Recurrence: a(n) = 44a(n-1) -887a(n-2) +10855a(n-3) -90083a(n-4) +536398a(n-5) -2365292a(n-6) +7860674a(n-7) -19852652a(n-8) +38152568a(n-9) -55523880a(n-10) +60518766a(n-11) -48502595a(n-12) +27783210a(n-13) -10888525a(n-14) +2721025a(n-15) -382125a(n-16) +22500a(n-17), n>17.
a(n) = (-12505804889/302760 +7963567/2610*n)*5^n +3872/3*4^n -1/24 +(135343*sqrt(3)/18 -234421/18)*(2 -sqrt(3))^n -(135343*sqrt(3)/18 +234421/18)*(2 +sqrt(3))^n +(33301/5 -74461*sqrt(5)/25 +(141*sqrt(5)/25 -63/5)*n)*((5 -sqrt(5))/2)^n +(74461*sqrt(5)/25 +33301/5 - (141*sqrt(5)/25 + 63/5)*n)*((5 +sqrt(5))/2)^n + (4306740/169 - 1194474*sqrt(13)/169 + (139103/117 - 501541*sqrt(13)/1521)*n)*((5 -sqrt(13))/2)^n +(1194474*sqrt(13)/169 +4306740/169 +(501541*sqrt(13)/1521 +139103/117)*n)*((5 +sqrt(13))/2)^n +72*(b*(3504697*c - 11380560) -11380560*c +36953816)/(142129*(a - b)*(a - c))*a^n +72*(a*(3504697*c - 11380560) - 8*(1422570*c - 4619227))/(142129*(a - b)*(c - b))*b^n +72*(a*(3504697*b - 11380560) -8*(1422570*b - 4619227))/(142129*(a - c)*(b - c))*c^n, where: a=2-2*sin(Pi/14), b=2+2*sin(3*Pi/14), c=2-2*cos(Pi/7). - Vaclav Kotesovec, added Mar 01 2010, updated Mar 29 2010.

A189889 Maximum number of nonattacking kings on an n X n toroidal board.

Original entry on oeis.org

1, 1, 1, 4, 5, 9, 10, 16, 18, 25, 27, 36, 39, 49, 52, 64, 68, 81, 85, 100, 105, 121, 126, 144, 150, 169, 175, 196, 203, 225, 232, 256, 264, 289, 297, 324, 333, 361, 370, 400, 410, 441, 451, 484, 495, 529, 540, 576, 588, 625
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 30 2011

Keywords

Comments

a(n) is the independence number of the Cayley graph on the group Z_n X Z_n with generators (+-e_1, +-e_2)<>(0,0) where e_i is in {0,1} for i=1,2. - Miquel A. Fiol, Aug 07 2024
For n>=4 a(n) is the maximum number of edges of an n-cycle graph with chords not containing any triangle with some edges of the cycle. - Miquel A. Fiol, Sep 20 2024

References

  • John Watkins, Across the Board: The Mathematics of Chessboard Problems (2004), Theorem 11.1, p.194.

Crossrefs

Programs

  • Magma
    [1] cat [Floor(n*Floor(n/2)/2): n in [2..50]]; // G. C. Greubel, Jan 13 2018
  • Maple
    A189889:=n->`if`(n=1,1,floor(n*floor(n/2)/2)); seq(A189889(k), k=1..100); # Wesley Ivan Hurt, Nov 07 2013
  • Mathematica
    Table[If[n==1,1,Floor[(n*Floor[n/2])/2]],{n,1,50}]
    CoefficientList[Series[(- x^7 + x^6 + x^5 + 3 * x^3 - x^2 + 1) / (-x^7 + x^6 + x^5 - x^4 + x^3 - x^2 - x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)
    Join[{1},LinearRecurrence[{1,1,-1,1,-1,-1,1},{1,1,4,5,9,10,16},50]] (* Harvey P. Dale, Aug 07 2013 *)
  • PARI
    Vec(x*(-x^7 + x^6 + x^5 + 3*x^3 - x^2 + 1) / (-x^7 + x^6 + x^5 - x^4 + x^3 - x^2 - x + 1) + O(x^51)) \\ Indranil Ghosh, Mar 09 2017
    
  • PARI
    a(n) = if(n==1, 1, floor((n*floor(n/2))/2)); \\ Indranil Ghosh, Mar 09 2017
    
  • Python
    def A189889(n): return 1 if n==1 else (n*(n/2))/2 # Indranil Ghosh, Mar 09 2017
    

Formula

a(n) = floor((n*floor(n/2))/2), n > 1 (Watkins and Ricci, 2004).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7).
G.f.: x*(-x^7 +x^6 +x^5 +3*x^3 -x^2 +1) / (-x^7 +x^6 +x^5 -x^4+ x^3 -x^2 -x +1).

A173783 Number of ways to place 5n nonattacking kings on a 10 X 2n chessboard.

Original entry on oeis.org

192, 7698, 166368, 2580754, 32572756, 357365350, 3544192112, 32580145116, 282359109140, 2335042206624, 18589546217696, 143422674213726, 1077891352444220, 7923134615854816, 57146364209686016, 405497952834408698
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 24 2010

Keywords

Crossrefs

Column k=5 of A350819.

Programs

  • Mathematica
    CoefficientList[Series[2 (292626432 x^30 - 7695378432 x^29 + 94084706304 x^28 - 712519981056 x^27 + 3757888797696 x^26 - 14715718076160 x^25 + 44556058968960 x^24 - 107273952716256 x^23 + 209645023363168 x^22 - 337824014576768 x^21 + 454329405135504 x^20 - 514643686425920 x^19 + 494203416082160 x^18 - 403847150294172 x^17 + 281135354205764 x^16 - 166453721883480 x^15 + 83456844800670 x^14 - 35182845104124 x^13 + 12345883162136 x^12 - 3557728594620 x^11 + 827346101101 x^10 - 152042822189 x^9 + 21726065190 x^8 - 2499103126 x^7 + 289877178 x^6 - 45817212 x^5 + 7810422 x^4 - 1012942 x^3 + 86355 x^2 - 4311 x + 96) / ((1 - 2 x) (x^2 - 4 x + 1) (4 x - 1) (6 x - 1)^2 (2 x^2 - 4 x + 1) (2 x^2 - 5 x + 1) (4 x^2 - 6 x + 1)^2 (6 x^2 - 6 x + 1)^2 (7 x^2 - 6 x + 1)^2 (2 x^3 - 8 x^2 + 6 x - 1) (3 x^3 - 9 x^2 + 6 x - 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)

Formula

G.f.: 2*x*(292626432*x^30 -7695378432*x^29 +94084706304*x^28 -712519981056*x^27 +3757888797696*x^26 -14715718076160*x^25 +44556058968960*x^24 -107273952716256*x^23 +209645023363168*x^22 -337824014576768*x^21 +454329405135504*x^20 -514643686425920*x^19 +494203416082160*x^18 -403847150294172*x^17 +281135354205764*x^16 -166453721883480*x^15 +83456844800670*x^14 -35182845104124*x^13 +12345883162136*x^12 -3557728594620*x^11 +827346101101*x^10 -152042822189*x^9 +21726065190*x^8 -2499103126*x^7 +289877178*x^6 -45817212*x^5 +7810422*x^4 -1012942*x^3 +86355*x^2 -4311*x+96) / ((1-2*x) *(x^2-4*x+1) *(4*x-1) *(6*x-1)^2 *(2*x^2-4*x+1) *(2*x^2-5*x+1) *(4*x^2-6*x+1)^2 *(6*x^2-6*x+1)^2 *(7*x^2-6*x+1)^2 *(2*x^3-8*x^2+6*x-1) *(3*x^3-9*x^2+6*x-1)^2).
Recurrence: a(n) = 85a(n-1) -3441a(n-2) +88303a(n-3) -1613002a(n-4) +22327010a(n-5) -243429637a(n-6) +2145452227a(n-7) -15565947848a(n-8) +94202823084a(n-9) -480152808502a(n-10) +2075863416838a(n-11) -7651361422835a(n-12) +24128330540449a(n-13) -65240466585284a(n-14) +151411770874148a(n-15) -301613628545814a(n-16) +515173613407544a(n-17) -753006145475828a(n-18) +939001403456656a(n-19) -994821988961592a(n-20) +890558910282768a(n-21) -668920434927504a(n-22) +417832289937792a(n-23) -214574645977920a(n-24) +89258591798784a(n-25) -29486236792320a(n-26) +7526493775872a(n-27) -1426182018048a(n-28) +188221833216a(n-29) -15390756864a(n-30) +585252864a(n-31), n>31.

A174154 Number of ways to place 6n nonattacking kings on a 12 x 2n chessboard.

Original entry on oeis.org

1, 448, 30319, 976640, 21137959, 357365350, 5109144543, 64737165162, 749160010737, 8080813574550, 82425144219429, 803491953235264, 7545414941610145, 68680800264413920, 608889093898882615, 5278006575696293456, 44873569636443901967, 375159494582050088590, 3090799708762482416287
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 10 2010

Keywords

Crossrefs

Column k=6 of A350819.

Extensions

More terms from Jinyuan Wang, Feb 26 2020
a(0)=1 prepended by Andrew Howroyd, Mar 26 2023

A174558 Number of ways to place 8n nonattacking kings on a 16 x 2n chessboard.

Original entry on oeis.org

2304, 419933, 28432288, 1134127305, 32580145116, 749160010737, 14677177838054, 254977173389319, 4035559337688370, 59315924213143597, 821112680030028632, 10819171744710664383, 136800806311499633208, 1670597119210336446533, 19804685547188544317522, 228865023358344707514899, 2586924156960003793687130, 28681715460054576813151389, 312656761422008821513384848, 3357651442822195404605813501
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 29 2010

Keywords

Crossrefs

Formula

Asymptotic formula for number of ways to place m x n nonattacking kings on a 2m x 2n chessboard (this case is m=8): f(m,n) ~ k(m)*n*(m+1)^n
First values of k(m):
k(1)=1,
k(2)=17,
k(3)=231,
k(4)=3051.17509,
k(5)=40881.99638,
k(6)=563050.92363,
k(7)=8008508.28858,
k(8)=117833087.45133
k(9)=1794306724.77472
k(10)=28276454469.76459
k(11)=461049875818.05305
k(12)=7775513990776.97046
k(13)=135589372611110.17367
k(14)=2443990803097108.58764
k(15)=45522076785406201.22572
k(16)=875939597341977670.66777
k(17)=17407856624734801679.11613
k(18)=357216046100723515478.42809
k(19)=7567101689641721175327.80272

A174155 Number of ways to place 7n nonattacking kings on a 14 x 2n chessboard.

Original entry on oeis.org

1, 1024, 114606, 5392704, 159636030, 3544192112, 64737165162, 1027533353168, 14677177838054, 193194265398240, 2383116363555182, 27889602664055396, 312546900470579954, 3378090945290324892, 35412239480510055916, 361670315347336810428, 3611858972942315054336, 35375586671457852212944
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 10 2010

Keywords

Crossrefs

Extensions

More terms from Jinyuan Wang, Feb 26 2020
a(0)=1 prepended by Andrew Howroyd, Mar 26 2023

A195648 Number of ways to place 9n nonattacking kings on a 18 x 2n chessboard.

Original entry on oeis.org

5120, 1501674, 144605184, 7683664202, 282359109140, 8080813574550, 193194265398240, 4035559337688370, 75925129079783308, 1314578079936797520, 21279238303065874504, 325878859655043000344, 4765036384361599508980, 67005992305769489072298, 911373843678367079288192
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 22 2011

Keywords

Crossrefs

Column k=9 of A350819.

Formula

Recurrence order is 548.

A195649 Number of ways to place 10n nonattacking kings on a 20 x 2n chessboard.

Original entry on oeis.org

11264, 5266069, 714611200, 50123713793, 2335042206624, 82425144219429, 2383116363555182, 59315924213143597, 1314578079936797520, 26568150968269086211, 498306336520679626558, 8788579757709800395287, 147246060712874767006100, 2362334876238883501403023
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 22 2011

Keywords

Crossrefs

Column k=10 of A350819.

Formula

Recurrence order is 1318.
Showing 1-10 of 14 results. Next