cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A350819 Array read by antidiagonals: T(m,n) is the number of maximum independent sets in the 2m X 2n king graph.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 79, 32, 1, 1, 80, 408, 408, 80, 1, 1, 192, 1847, 3600, 1847, 192, 1, 1, 448, 7698, 26040, 26040, 7698, 448, 1, 1, 1024, 30319, 166368, 281571, 166368, 30319, 1024, 1, 1, 2304, 114606, 976640, 2580754, 2580754, 976640, 114606, 2304, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Comments

Number of ways to tile a (2m+1) X (2n+1) board with m*n 2 X 2 tiles and 2m+2n+1 1 X 1 tiles.
For m,n > 0, T(m,n) is the number of minimum dominating sets in the (3m-1) X (3n-1) king graph.

Examples

			Table begins:
=============================================
m\n | 0   1    2      3       4        5
----+----------------------------------------
  0 | 1   1    1      1       1        1 ...
  1 | 1   4   12     32      80      192 ...
  2 | 1  12   79    408    1847     7698 ...
  3 | 1  32  408   3600   26040   166368 ...
  4 | 1  80 1847  26040  281571  2580754 ...
  5 | 1 192 7698 166368 2580754 32572756 ...
  ...
		

Crossrefs

Formula

T(m,n) = T(n,m).
T(m,n) = A350818(2*m, 2*n) = A350815(3*m-1, 3*n-1).

A195653 Number of ways to place 9n nonattacking kings on an 18 X 2n cylindrical chessboard.

Original entry on oeis.org

5120, 21508, 109796, 626780, 3877300, 25603228, 178909300, 1314748124, 10105541204, 80812754568, 668845118276, 5700499630916, 49800720887968, 444140848321356, 4029482453905756, 37080781799409148, 345278411878468044, 3246772078088155432, 30781946900321278256
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 22 2011

Keywords

Comments

This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 18, number of rows = 2n).

Crossrefs

Formula

Recurrence order is 400.

A195658 Number of ways to place 9n nonattacking kings on a vertical cylinder 18 X 2n.

Original entry on oeis.org

1024, 50922, 815816, 7238864, 44693472, 216134044, 877751236, 3130270224, 10105541204, 30179587994, 84719304384, 226268016376, 580363147336, 1440139184616, 3477556916828, 8210011147304, 19021962952188, 43385173057846, 97653259485592, 217359166880016
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 22 2011

Keywords

Comments

Vertical cylinder: a chessboard where it is supposed that the columns 1 and 18 are in contact (number of columns = 18, number of rows = 2n)

Crossrefs

Formula

Recurrence: a(n) = -4*a(n-10) + 36*a(n-9) - 145*a(n-8) + 344*a(n-7) - 532*a(n-6) + 560*a(n-5) - 406*a(n-4) + 200*a(n-3) - 64*a(n-2) + 12*a(n-1).
G.f.: (1 + 1012*x + 38698*x^2 + 270088*x^3 + 503686*x^4 + 270112*x^5 + 37900*x^6 + 1516*x^7 + 25*x^8)/((x-1)^8*(2*x-1)^2).
a(n) = (21623809*n - 226349399)*2^n + 8913/40*n^7 + 124781/20*n^6 + 376359/4*n^5 + 977074*n^4 + 294753537/40*n^3 + 787733819/20*n^2 + 135269649*n + 226349400.
Showing 1-3 of 3 results.