cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A018807 Number of ways to place n^2 nonattacking kings on 2n X 2n chessboard.

Original entry on oeis.org

1, 4, 79, 3600, 281571, 32572756, 5109144543, 1027533353168, 254977173389319, 75925129079783308, 26568150968269086211, 10749154284380665611224, 4963704194366362387891227, 2588716234142991968960920692, 1511548995678989691821551648635
Offset: 0

Views

Author

Keywords

Comments

Rotations and reflections are considered distinct.
Also, number of ways to tile a (2n+1) X (2n+1) board with n^2 2 X 2 tiles and 4n+1 1 X 1 tiles, rotations and reflections counted as distinct. - David W. Wilson, Aug 18 2011
Number of maximum independent vertex sets in the 2n X 2n king graph. - Eric W. Weisstein, Jun 20 2017

Crossrefs

Formula

Asymptotic (M. Larsen, 1995): log(a(n)) = 2n*log(n) - 2n*log(2) + O(n^(4/5)*log(n)).

Extensions

a(0) added by Geoffrey H. Morley, Feb 06 2013

A350819 Array read by antidiagonals: T(m,n) is the number of maximum independent sets in the 2m X 2n king graph.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 12, 12, 1, 1, 32, 79, 32, 1, 1, 80, 408, 408, 80, 1, 1, 192, 1847, 3600, 1847, 192, 1, 1, 448, 7698, 26040, 26040, 7698, 448, 1, 1, 1024, 30319, 166368, 281571, 166368, 30319, 1024, 1, 1, 2304, 114606, 976640, 2580754, 2580754, 976640, 114606, 2304, 1
Offset: 0

Views

Author

Andrew Howroyd, Jan 17 2022

Keywords

Comments

Number of ways to tile a (2m+1) X (2n+1) board with m*n 2 X 2 tiles and 2m+2n+1 1 X 1 tiles.
For m,n > 0, T(m,n) is the number of minimum dominating sets in the (3m-1) X (3n-1) king graph.

Examples

			Table begins:
=============================================
m\n | 0   1    2      3       4        5
----+----------------------------------------
  0 | 1   1    1      1       1        1 ...
  1 | 1   4   12     32      80      192 ...
  2 | 1  12   79    408    1847     7698 ...
  3 | 1  32  408   3600   26040   166368 ...
  4 | 1  80 1847  26040  281571  2580754 ...
  5 | 1 192 7698 166368 2580754 32572756 ...
  ...
		

Crossrefs

Formula

T(m,n) = T(n,m).
T(m,n) = A350818(2*m, 2*n) = A350815(3*m-1, 3*n-1).

A189889 Maximum number of nonattacking kings on an n X n toroidal board.

Original entry on oeis.org

1, 1, 1, 4, 5, 9, 10, 16, 18, 25, 27, 36, 39, 49, 52, 64, 68, 81, 85, 100, 105, 121, 126, 144, 150, 169, 175, 196, 203, 225, 232, 256, 264, 289, 297, 324, 333, 361, 370, 400, 410, 441, 451, 484, 495, 529, 540, 576, 588, 625
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 30 2011

Keywords

Comments

a(n) is the independence number of the Cayley graph on the group Z_n X Z_n with generators (+-e_1, +-e_2)<>(0,0) where e_i is in {0,1} for i=1,2. - Miquel A. Fiol, Aug 07 2024
For n>=4 a(n) is the maximum number of edges of an n-cycle graph with chords not containing any triangle with some edges of the cycle. - Miquel A. Fiol, Sep 20 2024

References

  • John Watkins, Across the Board: The Mathematics of Chessboard Problems (2004), Theorem 11.1, p.194.

Crossrefs

Programs

  • Magma
    [1] cat [Floor(n*Floor(n/2)/2): n in [2..50]]; // G. C. Greubel, Jan 13 2018
  • Maple
    A189889:=n->`if`(n=1,1,floor(n*floor(n/2)/2)); seq(A189889(k), k=1..100); # Wesley Ivan Hurt, Nov 07 2013
  • Mathematica
    Table[If[n==1,1,Floor[(n*Floor[n/2])/2]],{n,1,50}]
    CoefficientList[Series[(- x^7 + x^6 + x^5 + 3 * x^3 - x^2 + 1) / (-x^7 + x^6 + x^5 - x^4 + x^3 - x^2 - x + 1), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 02 2013 *)
    Join[{1},LinearRecurrence[{1,1,-1,1,-1,-1,1},{1,1,4,5,9,10,16},50]] (* Harvey P. Dale, Aug 07 2013 *)
  • PARI
    Vec(x*(-x^7 + x^6 + x^5 + 3*x^3 - x^2 + 1) / (-x^7 + x^6 + x^5 - x^4 + x^3 - x^2 - x + 1) + O(x^51)) \\ Indranil Ghosh, Mar 09 2017
    
  • PARI
    a(n) = if(n==1, 1, floor((n*floor(n/2))/2)); \\ Indranil Ghosh, Mar 09 2017
    
  • Python
    def A189889(n): return 1 if n==1 else (n*(n/2))/2 # Indranil Ghosh, Mar 09 2017
    

Formula

a(n) = floor((n*floor(n/2))/2), n > 1 (Watkins and Ricci, 2004).
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) - a(n-6) + a(n-7).
G.f.: x*(-x^7 +x^6 +x^5 +3*x^3 -x^2 +1) / (-x^7 +x^6 +x^5 -x^4+ x^3 -x^2 -x +1).

A195648 Number of ways to place 9n nonattacking kings on a 18 x 2n chessboard.

Original entry on oeis.org

5120, 1501674, 144605184, 7683664202, 282359109140, 8080813574550, 193194265398240, 4035559337688370, 75925129079783308, 1314578079936797520, 21279238303065874504, 325878859655043000344, 4765036384361599508980, 67005992305769489072298, 911373843678367079288192
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 22 2011

Keywords

Crossrefs

Column k=9 of A350819.

Formula

Recurrence order is 548.

A195652 Number of ways to place 8n nonattacking kings on a 16 X 2n cylindrical chessboard.

Original entry on oeis.org

2304, 9476, 47058, 259372, 1536814, 9643562, 63558566, 437500380, 3130270224, 23174548666, 176740657340, 1382652697282, 11052082053262, 89954475408222, 743275585245898, 6219118726337532, 52583297643941856, 448492643088144992, 3853319870967662784
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 22 2011

Keywords

Comments

This cylinder is horizontal: a chessboard where it is supposed that rows 1 and 2n are in contact (number of columns = 16, number of rows = 2n).

Crossrefs

Formula

Recurrence order is 208.

A195657 Number of ways to place 8n nonattacking kings on a vertical cylinder 16 X 2n.

Original entry on oeis.org

512, 17536, 218052, 1599820, 8500668, 36383284, 133538996, 437500380, 1314748124, 3694894500, 9849731140, 25173962492, 62193359676, 149475988116, 351246183572, 810197361564, 1840289301660, 4126688132548, 9154339355684, 20122502355004, 43888598831484
Offset: 1

Views

Author

Vaclav Kotesovec, Sep 22 2011

Keywords

Comments

Vertical cylinder: a chessboard where it is supposed that the columns 1 and 16 are in contact (number of columns = 16, number of rows = 2n).

Crossrefs

Formula

Recurrence: a(n) = 4*a(n-9) - 32*a(n-8) + 113*a(n-7) - 231*a(n-6) + 301*a(n-5) - 259*a(n-4) + 147*a(n-3) - 53*a(n-2) + 11*a(n-1).
G.f.: -(1 + 501*x + 11957*x^2 + 52145*x^3 + 55651*x^4 + 13919*x^5 + 695*x^6 + 27*x^7)/((x-1)^7*(2*x-1)^2).
a(n) = (1751437*n - 15876635)*2^n + 8431/45*n^6 + 22263/5*n^5 + 500633/9*n^4 + 1381699/3*n^3 + 117001024/45*n^2 + 138801256/15*n + 15876636.
Showing 1-6 of 6 results.