1, 2, 1, 6, 6, 1, 20, 30, 10, 1, 70, 140, 70, 14, 1, 252, 630, 420, 126, 18, 1, 924, 2772, 2310, 924, 198, 22, 1, 3432, 12012, 12012, 6006, 1716, 286, 26, 1, 12870, 51480, 60060, 36036, 12870, 2860, 390, 30, 1, 48620, 218790, 291720, 204204, 87516, 24310
Offset: 0
Array begins:
1, 2, 6, 20, 70, ...
1, 6, 30, 140, 630, ...
1, 10, 70, 420, 2310, ...
1, 14, 126, 924, 6006, ...
Recurrence from A-sequence: 140 = a(4,1) = 20 + 4*30.
Recurrence from Z-sequence: 252 = a(5,0) = 2*70 + 2*140 - 4*70 + 10*14 - 28*1.
From _Paul Barry_, Apr 14 2010: (Start)
As a number triangle, T(n, m) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 6 6 1
3: 20 30 10 1
4: 70 140 70 14 1
5: 252 630 420 126 18 1
6: 924 2772 2310 924 198 22 1
7: 3432 12012 12012 6006 1716 286 26 1
8: 12870 51480 60060 36036 12870 2860 390 30 1
9: 48620 218790 291720 204204 87516 24310 4420 510 34 1
10: 184756 923780 1385670 1108536 554268 184756 41990 6460 646 38 1
... [Reformatted and extended by _Wolfdieter Lang_, Aug 10 2017]
Production matrix begins
2, 1,
2, 4, 1,
-4, 0, 4, 1,
10, 0, 0, 4, 1,
-28, 0, 0, 0, 4, 1,
84, 0, 0, 0, 0, 4, 1,
-264, 0, 0, 0, 0, 0, 4, 1,
858, 0, 0, 0, 0, 0, 0, 4, 1,
-2860, 0, 0, 0, 0, 0, 0, 0, 4, 1 (End)
Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) = (2*(2*2+1)/2) * Sum_{k=2..3} 4^(3-k)*T(k, 2) = 5*(4*1 + 1*10) = 70. - _Wolfdieter Lang_, Aug 10 2017
From _Peter Bala_, Feb 15 2018: (Start)
With C(x) = (1 - sqrt( 1 - 4*x))/(2*x),
-x^3/3! * (d/dx)^3(C(x)) = 1/(2*x)*( 1 - (1 - 10*x + 30*x^2 - 20*x^3)/(1 - 4*x)^(5/2) ).
x^4/4! * (d/dx)^4(C(x)) = 1/(2*x)*( 1 - (1 - 14*x + 70*x^2 - 140*x^3 + 70*x^4 )/(1 - 4*x)^(7/2) ). (End)
Comments