cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 46 results. Next

A038836 Convolution of Catalan numbers {1,2,5,14,...} with A002802 (5-fold convoluted central binomial coefficients).

Original entry on oeis.org

1, 12, 95, 624, 3682, 20264, 106203, 536840, 2639230, 12692360, 59957846, 279081152, 1282981380, 5835994768, 26305678739, 117635236344, 522394992358, 2305593653960, 10120007354562, 44201842781536, 192208416186716
Offset: 0

Views

Author

Keywords

Comments

Convolution of A038806(n+1), n >= 0, with A000984 (central binomial coefficients); also convolution of A029760 with A000302 (powers of 4).

Crossrefs

Formula

a(n) = binomial(n+5, 2)*binomial(2*(n+3), n+2)/6 - (n+3)*2^(2*n+3); G.f. c(x)^2/(1-4*x)^(5/2), where c(x) = g.f. for Catalan numbers A000108;

A046521 Array T(i,j) = binomial(-1/2-i,j)*(-4)^j, i,j >= 0 read by antidiagonals going down.

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 20, 30, 10, 1, 70, 140, 70, 14, 1, 252, 630, 420, 126, 18, 1, 924, 2772, 2310, 924, 198, 22, 1, 3432, 12012, 12012, 6006, 1716, 286, 26, 1, 12870, 51480, 60060, 36036, 12870, 2860, 390, 30, 1, 48620, 218790, 291720, 204204, 87516, 24310
Offset: 0

Views

Author

Keywords

Comments

Or, a triangle related to A000984 (central binomial) and A000302 (powers of 4).
This is an example of a Riordan matrix. See the Shapiro et al. reference quoted under A053121 and Notes 1 and 2 of the Wolfdieter Lang reference, p. 306.
As a number triangle, this is the Riordan array (1/sqrt(1-4x),x/(1-4x)). - Paul Barry, May 30 2005
The A- and Z- sequences for this Riordan matrix are (see the Wolfdieter Lang link under A006232 for the D. G. Rogers, D. Merlini et al. and R. Sprugnoli references on Riordan A- and Z-sequences with a summary): A-sequence [1,4,0,0,0,...] and Z-sequence 4+2*A000108(n)*(-1)^(n+1)=[2, 2, -4, 10, -28, 84, -264, 858, -2860, 9724, -33592, 117572, -416024, 1485800, -5348880, 19389690, -70715340, 259289580, -955277400, 3534526380], n >= 0. The o.g.f. for the Z-sequence is 4-2*c(-x) with the Catalan number o.g.f. c(x). - Wolfdieter Lang, Jun 01 2007
As a triangle, T(2n,n) is A001448. Row sums are A046748. Diagonal sums are A176280. - Paul Barry, Apr 14 2010
From Wolfdieter Lang, Aug 10 2017: (Start)
The row polynomials R(n, x) of Riordan triangles R = (G(x), F(x)), with F(x)= x*Fhat(x), belong to the class of Boas-Buck polynomials (see the reference). Hence they satisfy the Boas-Buck identity (we use the notation of Rainville, Theorem 50, p. 141):
(E_x - n*1)*R(n, x) = -Sum_{k=0..n-1} (alpha(k)*1 + beta(k)*E_x)*R(n-1.k, x), for n >= 0, where E_x = x*d/dx (Euler operator). The Boas-Buck sequences are given by alpha(k) := [x^k] ((d/dx)log(G(x))) and beta(k) := [x^k] (d/dx)log(Fhat(x)).
This entails a recurrence for the sequence of column m of the Riordan triangle T, n > m >= 0: T(n, m) = (1/(n-m))*Sum_{k=m..n-1} (alpha(n-1-k) + m*beta(n-1-k))*T(k, m), with input T(m,m).
For the present case the Boas-Buck identity for the row polynomials is (E_x - n*1)*R(n, x) = -Sum_{k=0..n-1} 2^(2*k+1)*(1 + 2*E_x)*R(n-1-k, x), for n >= 0. For the ensuing recurrence for the columns m of the triangle T see the formula and example section. (End)
From Peter Bala, Mar 04 2018: (Start)
The following two remarks are particular cases of more general results for Riordan arrays of the form (f(x), x/(1 - k*x)).
1) Let R(n,x) denote the n-th row polynomial of this triangle. The polynomial R(n,4*x) has the e.g.f. Sum_{k = 0..n} T(n,k)*(4*x)/k!. The e.g.f. for the n-th diagonal of the triangle (starting at n = 0 for the main diagonal) equals exp(x) * the e.g.f. for the polynomial R(n,4*x). For example, when n = 3 we have exp(x)*(20 + 30*(4*x) + 10*(4*x)^2/2! + (4*x)^3/3!) = 20 + 140*x + 420*x^2/2! + 924*x^3/3! + 1716*x^4/4! + ....
2) Let P(n,x) = Sum_{k = 0..n} T(n,k)*x^(n-k) denote the n-th row polynomial in descending powers of x. P(n,x) is the n-th degree Taylor polynomial of (1 + 4*x)^(n-1/2) about 0. For example, for n = 4 we have (1 + 4*x)^(7/2) = 70*x^4 + 140*x^3 + 70*x^2 + 14*x + 1 + O(x^5).
Let C(x) = (1 - sqrt(1 - 4*x))/(2*x) denote the o.g.f. of the Catalan numbers A000108. The derivatives of C(x) are determined by the identity (-1)^n * x^n/n! * (d/dx)^n(C(x)) = 1/(2*x)*( 1 - P(n,-x)/(1 - 4*x)^(n-1/2) ), n = 0,1,2,.... See Lang 2002. Cf. A283150 and A283151. (End)

Examples

			Array begins:
  1,  2,   6,  20,   70, ...
  1,  6,  30, 140,  630, ...
  1, 10,  70, 420, 2310, ...
  1, 14, 126, 924, 6006, ...
Recurrence from A-sequence: 140 = a(4,1) = 20 + 4*30.
Recurrence from Z-sequence: 252 = a(5,0) = 2*70 + 2*140 - 4*70 + 10*14 - 28*1.
From _Paul Barry_, Apr 14 2010: (Start)
As a number triangle, T(n, m) begins:
n\k       0      1       2       3      4      5     6    7   8  9 10 ...
0:        1
1:        2      1
2:        6      6       1
3:       20     30      10       1
4:       70    140      70      14      1
5:      252    630     420     126     18      1
6:      924   2772    2310     924    198     22     1
7:     3432  12012   12012    6006   1716    286    26    1
8:    12870  51480   60060   36036  12870   2860   390   30   1
9:    48620 218790  291720  204204  87516  24310  4420  510  34  1
10:  184756 923780 1385670 1108536 554268 184756 41990 6460 646 38  1
... [Reformatted and extended by _Wolfdieter Lang_, Aug 10 2017]
Production matrix begins
      2, 1,
      2, 4, 1,
     -4, 0, 4, 1,
     10, 0, 0, 4, 1,
    -28, 0, 0, 0, 4, 1,
     84, 0, 0, 0, 0, 4, 1,
   -264, 0, 0, 0, 0, 0, 4, 1,
    858, 0, 0, 0, 0, 0, 0, 4, 1,
  -2860, 0, 0, 0, 0, 0, 0, 0, 4, 1 (End)
Boas-Buck recurrence for column m = 2, and n = 4: T(4, 2) = (2*(2*2+1)/2) * Sum_{k=2..3} 4^(3-k)*T(k, 2) = 5*(4*1 + 1*10) = 70. - _Wolfdieter Lang_, Aug 10 2017
From _Peter Bala_, Feb 15 2018: (Start)
With C(x) = (1 - sqrt( 1 - 4*x))/(2*x),
-x^3/3! * (d/dx)^3(C(x)) = 1/(2*x)*( 1 - (1 - 10*x + 30*x^2 - 20*x^3)/(1 - 4*x)^(5/2) ).
x^4/4! * (d/dx)^4(C(x)) = 1/(2*x)*( 1 - (1 - 14*x + 70*x^2 - 140*x^3 + 70*x^4 )/(1 - 4*x)^(7/2) ). (End)
		

References

  • Ralph P. Boas, jr. and R. Creighton Buck, Polynomial Expansions of analytic functions, Springer, 1958, pp. 17 - 21, (last sign in eq. (6.11) should be -).
  • Earl D. Rainville, Special Functions, The Macmillan Company, New York, 1960, ch. 8, sect. 76, 140 - 146.

Crossrefs

Columns include: A000984 (m=0), A002457 (m=1), A002802 (m=2), A020918 (m=3), A020920 (m=4), A020922 (m=5), A020924 (m=6), A020926 (m=7), A020928 (m=8), A020930 (m=9), A020932 (m=10).
Row sums: A046748.

Programs

  • GAP
    Flat(List([0..9],n->List([0..n],m->Binomial(2*n,n)*Binomial(n,m)/Binomial(2*m,m)))); # Muniru A Asiru, Jul 19 2018
    
  • Magma
    [Binomial(n+1,k+1)*Catalan(n)/Catalan(k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 28 2024
    
  • Mathematica
    t[i_, j_] := If[i < 0 || j < 0, 0, (2*i + 2*j)!*i!/(2*i)!/(i + j)!/j!]; Flatten[Reverse /@ Table[t[n, k - n] , {k, 0, 9}, {n, k, 0, -1}]][[1 ;; 51]] (* Jean-François Alcover, Jun 01 2011, after PARI prog. *)
  • PARI
    T(i,j)=if(i<0 || j<0,0,(2*i+2*j)!*i!/(2*i)!/(i+j)!/j!)
    
  • SageMath
    def A046521(n,k): return binomial(n+1, k+1)*catalan_number(n)/catalan_number(k)
    flatten([[A046521(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jul 28 2024

Formula

T(n, m) = binomial(2*n, n)*binomial(n, m)/binomial(2*m, m), n >= m >= 0.
G.f. for column m: ((x/(1-4*x))^m)/sqrt(1-4*x).
Recurrence from the A-sequence given above: a(n,m) = a(n-1,m-1) + 4*a(n-1,m), for n >= m >= 1.
Recurrence from the Z-sequence given above: a(n,0) = Sum_{j=0..n-1} Z(j)*a(n-1,j), n >= 1; a(0,0)=1.
As a number triangle, T(n,k) = C(2*n,n)*C(n,k)/C(2*k,k) = C(n-1/2,n-k)*4^(n-k). - Paul Barry, Apr 14 2010
From Peter Bala, Apr 11 2012: (Start):
One of three infinite families of integral factorial ratio sequences of height 1 (see Bober, Theorem 1.2). The other two are A007318 and A068555.
The triangular array equals exp(S), where the infinitesimal generator S has [2,6,10,14,18,...] on the main subdiagonal and zeros elsewhere.
Recurrence equation for the square array: T(n+1,k) = (k+1)/(4*n+2)*T(n,k+1). (End)
T(n,k) = 4^(n-k)*A006882(2*n - 1)/(A006882(2*n - 2*k)*A006882(2*k - 1)) = 4^(n-k)*(2*n - 1)!!/((2*n - 2*k)!*(2*k - 1)!!). - Peter Bala, Nov 07 2016
Boas-Buck recurrence for column m, m > n >= 0: T(n, m) = (2*(2*m+1)/(n-m))*Sum_{k=m..n-1} 4^(n-1-k)*T(k, m), with input T(n, n) = 1. See a comment above. - Wolfdieter Lang, Aug 10 2017
From Peter Bala, Aug 13 2021: (Start)
Analogous to the binomial transform we have the following sequence transformation formula: g(n) = Sum_{k = 0..n} T(n,k)*b^(n-k)*f(k) iff f(n) = Sum_{k = 0..n} (-1)^(n-k)*T(n,k)*b^(n-k)*g(k). See Prodinger, bottom of p. 413, with b replaced with 4*b, c = 1 and d = 1/2.
Equivalently, if F(x) = Sum_{n >= 0} f(n)*x^n and G(x) = Sum_{n >= 0} g(n)*x^n are a pair of formal power series then
G(x) = 1/sqrt(1 - 4*b*x) * F(x/(1 - 4*b*x)) iff F(x) = 1/sqrt(1 + 4*b*x) * G(x/(1 + 4*b*x)).
The m-th power of this array has entries m^(n-k)*T(n,k). (End)

A088617 Triangle read by rows: T(n,k) = C(n+k,n)*C(n,k)/(k+1), for n >= 0, k = 0..n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 5, 1, 10, 30, 35, 14, 1, 15, 70, 140, 126, 42, 1, 21, 140, 420, 630, 462, 132, 1, 28, 252, 1050, 2310, 2772, 1716, 429, 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430, 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862
Offset: 0

Views

Author

N. J. A. Sloane, Nov 23 2003

Keywords

Comments

Row sums: A006318 (Schroeder numbers). Essentially same as triangle A060693 transposed.
T(n,k) is number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k U's. E.g., T(2,1)=3 because we have UHD, UDH and HUD. - Emeric Deutsch, Dec 06 2003
Little Schroeder numbers A001003 have a(n) = Sum_{k=0..n} A088617(n,k)*(-1)^(n-k)*2^k. - Paul Barry, May 24 2005
Conjecture: The expected number of U's in a Schroeder n-path is asymptotically Sqrt[1/2]*n for large n. - David Callan, Jul 25 2008
T(n, k) is also the number of order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Oct 02 2008
The antidiagonals of this lower triangular matrix are the rows of A055151. - Tom Copeland, Jun 17 2015

Examples

			Triangle begins:
  [0] 1;
  [1] 1,  1;
  [2] 1,  3,   2;
  [3] 1,  6,  10,    5;
  [4] 1, 10,  30,   35,    14;
  [5] 1, 15,  70,  140,   126,    42;
  [6] 1, 21, 140,  420,   630,   462,   132;
  [7] 1, 28, 252, 1050,  2310,  2772,  1716,   429;
  [8] 1, 36, 420, 2310,  6930, 12012, 12012,  6435,  1430;
  [9] 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862;
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.

Crossrefs

Programs

  • Magma
    [[Binomial(n+k,n)*Binomial(n,k)/(k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 18 2015
    
  • Maple
    R := n -> simplify(hypergeom([-n, n + 1], [2], -x)):
    Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
    seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
  • Mathematica
    Table[Binomial[n+k, n] Binomial[n, k]/(k+1), {n,0,10}, {k,0,n}]//Flatten (* Michael De Vlieger, Aug 10 2017 *)
  • PARI
    {T(n, k)= if(k+1, binomial(n+k, n)*binomial(n, k)/(k+1))}
    
  • SageMath
    flatten([[binomial(n+k, 2*k)*catalan_number(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 22 2022

Formula

Triangle T(n, k) read by rows; given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
T(n, k) = A085478(n, k)*A000108(k); A000108 = Catalan numbers. - Philippe Deléham, Dec 05 2003
Sum_{k=0..n} T(n, k)*x^k*(1-x)^(n-k) = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Aug 18 2005
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Oct 18 2007
O.g.f. (with initial 1 excluded) is the series reversion with respect to x of (1-t*x)*x/(1+x). Cf. A062991 and A089434. - Peter Bala, Jul 31 2012
G.f.: 1 + (1 - x - T(0))/y, where T(k) = 1 - x*(1+y)/( 1 - x*y/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 03 2013
From Peter Bala, Jul 20 2015: (Start)
O.g.f. A(x,t) = ( 1 - x - sqrt((1 - x)^2 - 4*x*t) )/(2*x*t) = 1 + (1 + t)*x + (1 + 3*t + 2*t^2)*x^2 + ....
1 + x*(dA(x,t)/dx)/A(x,t) = 1 + (1 + t)*x + (1 + 4*t + 3*t^2)*x^2 + ... is the o.g.f. for A123160.
For n >= 1, the n-th row polynomial equals (1 + t)/(n+1)*Jacobi_P(n-1,1,1,2*t+1). Removing a factor of 1 + t from the row polynomials gives the row polynomials of A033282. (End)
From Tom Copeland, Jan 22 2016: (Start)
The o.g.f. G(x,t) = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/2x = (t + t^2) x + (t + 3t^2 + 2t^3) x^2 + (t + 6t^2 + 10t^3 + 5t^3) x^3 + ... generating shifted rows of this entry, excluding the first, was given in my 2008 formulas for A033282 with an o.g.f. f1(x,t) = G(x,t)/(1+t) for A033282. Simple transformations presented there of f1(x,t) are related to A060693 and A001263, the Narayana numbers. See also A086810.
The inverse of G(x,t) is essentially given in A033282 by x1, the inverse of f1(x,t): Ginv(x,t) = x [1/(t+x) - 1/(1+t+x)] = [((1+t) - t) / (t(1+t))] x - [((1+t)^2 - t^2) / (t(1+t))^2] x^2 + [((1+t)^3 - t^3) / (t(1+t))^3] x^3 - ... . The coefficients in t of Ginv(xt,t) are the o.g.f.s of the diagonals of the Pascal triangle A007318 with signed rows and an extra initial column of ones. The numerators give the row o.g.f.s of signed A074909.
Rows of A088617 are shifted columns of A107131, whose reversed rows are the Motzkin polynomials of A055151, related to A011973. The diagonals of A055151 give the rows of A088671, and the antidiagonals (top to bottom) of A088617 give the rows of A107131 and reversed rows of A055151. The diagonals of A107131 give the columns of A055151. The antidiagonals of A088617 (bottom to top) give the rows of A055151.
(End)
T(n, k) = [x^k] hypergeom([-n, 1 + n], [2], -x). - Peter Luschny, Apr 26 2022

A038845 3-fold convolution of A000302 (powers of 4).

Original entry on oeis.org

1, 12, 96, 640, 3840, 21504, 114688, 589824, 2949120, 14417920, 69206016, 327155712, 1526726656, 7046430720, 32212254720, 146028888064, 657129996288, 2937757630464, 13056700579840, 57724360458240, 253987186016256, 1112705767309312, 4855443348258816
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A002802 with A000984 (central binomial coefficients).
With a different offset, number of n-permutations of 5 objects u, v, w, z, x with repetition allowed, containing exactly two u's. - Zerinvary Lajos, Dec 29 2007
Also convolution of A000302 with A002697, also convolution of A002457 with itself. - Rui Duarte, Oct 08 2011

Crossrefs

Sequences similar to the form q^(n-2)*binomial(n, 2): A000217 (q=1), A001788 (q=2), A027472 (q=3), this sequence (q=4), A081135 (q=5), A081136 (q=6), A027474 (q=7), A081138 (q=8), A081139 (q=9), A081140 (q=10), A081141 (q=11), A081142 (q=12), A027476 (q=15).

Programs

Formula

a(n) = (n+2)*(n+1)*2^(2*n-1).
G.f.: 1/(1-4*x)^3.
a(n) = Sum_{u+v+w+x+y+z=n} f(u)*f(v)*f(w)*f(x)*f(y)*f(z) with f(n)=A000984(n). - Philippe Deléham, Jan 22 2004
a(n) = binomial(n+2,n) * 4^n. - Rui Duarte, Oct 08 2011
E.g.f.: (1 + 8*x + 8*x^2)*exp(4*x). - G. C. Greubel, Jul 20 2019
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 8 - 24*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 40*log(5/4) - 8. (End)

A060693 Triangle (0 <= k <= n) read by rows: T(n, k) is the number of Schröder paths from (0,0) to (2n,0) having k peaks.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 14, 35, 30, 10, 1, 42, 126, 140, 70, 15, 1, 132, 462, 630, 420, 140, 21, 1, 429, 1716, 2772, 2310, 1050, 252, 28, 1, 1430, 6435, 12012, 12012, 6930, 2310, 420, 36, 1, 4862, 24310, 51480, 60060, 42042, 18018, 4620, 660, 45, 1, 16796
Offset: 0

Views

Author

F. Chapoton, Apr 20 2001

Keywords

Comments

The rows sum to A006318 (Schroeder numbers), the left column is A000108 (Catalan numbers); the next-to-left column is A001700, the alternating sum in each row but the first is 0.
T(n,k) is the number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k peaks. Example: T(2,1)=3 because we have UU*DD, U*DH and HU*D, the peaks being shown by *. E.g., T(n,k) = binomial(n,k)*binomial(2n-k,n-1)/n for n>0. - Emeric Deutsch, Dec 06 2003
A090181*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 14 2008
T(n,k) is also the number of rooted plane trees with maximal degree 3 and k vertices of degree 2 (a node may have at most 2 children, and there are exactly k nodes with 1 child). Equivalently, T(n,k) is the number of syntactically different expressions that can be formed that use a unary operation k times, a binary operation n-k times, and nothing else (sequence of operands is fixed). - Lars Hellstrom (Lars.Hellstrom(AT)residenset.net), Dec 08 2009

Examples

			Triangle begins:
00: [    1]
01: [    1,     1]
02: [    2,     3,      1]
03: [    5,    10,      6,      1]
04: [   14,    35,     30,     10,      1]
05: [   42,   126,    140,     70,     15,      1]
06: [  132,   462,    630,    420,    140,     21,     1]
07: [  429,  1716,   2772,   2310,   1050,    252,    28,    1]
08: [ 1430,  6435,  12012,  12012,   6930,   2310,   420,   36,   1]
09: [ 4862, 24310,  51480,  60060,  42042,  18018,  4620,  660,  45,  1]
10: [16796, 92378, 218790, 291720, 240240, 126126, 42042, 8580, 990, 55, 1]
...
		

Crossrefs

Triangle in A088617 transposed.
T(2n,n) gives A007004.

Programs

  • Maple
    A060693 := (n,k) -> binomial(n,k)*binomial(2*n-k,n)/(n-k+1); # Peter Luschny, May 17 2011
  • Mathematica
    t[n_, k_] := Binomial[n, k]*Binomial[2 n - k, n]/(n - k + 1); Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]] (* Robert G. Wilson v, May 30 2011 *)
  • PARI
    T(n, k) = binomial(n, k)*binomial(2*n - k, n)/(n - k + 1);
    for(n=0, 10, for(k=0, n, print1(T(n, k),", ")); print); \\ Indranil Ghosh, Jul 28 2017
    
  • Python
    from sympy import binomial
    def T(n, k): return binomial(n, k) * binomial(2 * n - k, n) / (n - k + 1)
    for n in range(11): print([T(n, k) for k in range(n + 1)])  # Indranil Ghosh, Jul 28 2017

Formula

Triangle T(n, k) (0 <= k <= n) read by rows; given by [1, 1, 1, 1, 1, ...] DELTA [1, 0, 1, 0, 1, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Aug 12 2003
If C_n(x) is the g.f. of row n of the Narayana numbers (A001263), C_n(x) = Sum_{k=1..n} binomial(n,k-1)*(binomial(n-1,k-1)/k) * x^k and T_n(x) is the g.f. of row n of T(n,k), then T_n(x) = C_n(x+1), or T(n,k) = [x^n]Sum_{k=1..n}(A001263(n,k)*(x+1)^k). - Mitch Harris, Jan 16 2007, Jan 31 2007
G.f.: (1 - t*y - sqrt((1-y*t)^2 - 4*y)) / 2.
T(n, k) = binomial(2n-k, n)*binomial(n, k)/(n-k+1). - Philippe Deléham, Dec 07 2003
A060693(n, k) = binomial(2*n-k, k)*A000108(n-k); A000108: Catalan numbers. - Philippe Deléham, Dec 30 2003
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n), for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Apr 01 2007
T(n,k) = Sum_{j>=0} A090181(n,j)*binomial(j,k). - Philippe Deléham, May 04 2007
Sum_{k=0..n} T(n,k)*x^(n-k) = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, respectively. - Philippe Deléham, Oct 18 2007
From Paul Barry, Jan 29 2009: (Start)
G.f.: 1/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x/(1-.... (continued fraction);
G.f.: 1/(1-(x+xy)/(1-x/(1-(x+xy)/(1-x/(1-(x+xy)/(1-.... (continued fraction). (End)
T(n,k) = [k<=n]*(Sum_{j=0..n} binomial(n,j)^2*binomial(j,k))/(n-k+1). - Paul Barry, May 28 2009
T(n,k) = A104684(n,k)/(n-k+1). - Peter Luschny, May 17 2011
From Tom Copeland, Sep 21 2011: (Start)
With F(x,t) = (1-(2+t)*x-sqrt(1-2*(2+t)*x+(t*x)^2))/(2*x) an o.g.f. (nulling the n=0 term) in x for the A060693 polynomials in t,
G(x,t) = x/(1+t+(2+t)*x+x^2) is the compositional inverse in x.
Consequently, with H(x,t) = 1/(dG(x,t)/dx) = (1+t+(2+t)*x+x^2)^2 / (1+t-x^2), the n-th A060693 polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n) x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/d) u, evaluated at u = 0.
Also, dF(x,t)/dx = H(F(x,t),t). (End)
See my 2008 formulas in A033282 to relate this entry to A088617, A001263, A086810, and other matrices. - Tom Copeland, Jan 22 2016
Rows of this entry are non-vanishing antidiagonals of A097610. See p. 14 of Agapito et al. for a bivariate generating function and its inverse. - Tom Copeland, Feb 03 2016
From Werner Schulte, Jan 09 2017: (Start)
T(n,k) = A126216(n,k-1) + A126216(n,k) for 0 < k < n;
Sum_{k=0..n} (-1)^k*(1+x*(n-k))*T(n,k) = x + (1-x)*A000007(n).
(End)
Conjecture: Sum_{k=0..n} (-1)^k*T(n,k)*(n+1-k)^2 = 1+n+n^2. - Werner Schulte, Jan 11 2017

Extensions

More terms from Vladeta Jovovic, Apr 21 2001
New description from Philippe Deléham, Aug 12 2003
New name using a comment by Emeric Deutsch from Peter Luschny, Jul 26 2017

A038846 4-fold convolution of A000302 (powers of 4); expansion of g.f. 1/(1-4*x)^4.

Original entry on oeis.org

1, 16, 160, 1280, 8960, 57344, 344064, 1966080, 10813440, 57671680, 299892736, 1526726656, 7633633280, 37580963840, 182536110080, 876173328384, 4161823309824, 19585050869760, 91396904058880, 423311976693760, 1947235092791296, 8901646138474496, 40462027902156800
Offset: 0

Views

Author

Keywords

Comments

Also minimal 3-covers of a labeled n-set that cover 3 points of that set uniquely (if offset is 3). Cf. A057524 for unlabeled case. - Vladeta Jovovic, Sep 02 2000
Also convolution of A020918 with A000984 (central binomial coefficients).
Let M=[1,0,0,i;0,1,i,0;0,i,1,0;i,0,0,1], i=sqrt(-1). Then 1/det(I-xM) = 1/(1-4x)^4. - Paul Barry, Apr 27 2005
With a different offset, number of n-permutations (n=4) of 5 objects u, v, w, z, x with repetition allowed, containing exactly three u's. Example: a(1)=16 because we have uuuv, uuvu, uvuu, vuuu, uuuw, uuwu, uwuu, wuuu, uuuz, uuzu, uzuu, zuuu, uuux, uuxu, uxuu and xuuu. - Zerinvary Lajos, May 19 2008
From A152818. a(n) = A006044/6. - Paul Curtz, Jan 07 2009
Also convolution of A000302 with A038845, also convolution of A002457 with A002802, also convolution of A002697. - Rui Duarte, Oct 08 2011

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4^n*Binomial(n+3,3) ) # G. C. Greubel, Jul 20 2019
  • Magma
    [4^n*Binomial(n+3, 3): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
    
  • Maple
    seq(seq(binomial(i, j)*4^(i-3), j =i-3), i=3..33); # Zerinvary Lajos, Dec 03 2007
    seq(binomial(n+3,3)*4^n,n=0..30); # Zerinvary Lajos, May 19 2008
  • Mathematica
    Table[4^n*Binomial[n+3,3], {n,0,30}] (* G. C. Greubel, Jul 20 2019 *)
  • PARI
    Vec(1/(1-4*x)^4+O(x^30)) \\ Charles R Greathouse IV, Oct 03 2016
    
  • Sage
    [lucas_number2(n, 4, 0)*binomial(n,3)/2^6 for n in range(3, 33)] # Zerinvary Lajos, Mar 11 2009
    

Formula

a(n) = binomial(n+3, 3)*4^n.
G.f.: 1/(1-4*x)^4.
a(n) = Sum_{a+b+c+d+e+f+g+h=n} f(a)*f(b)*f(c)*f(d)*f(e)*f(f)*f(g)*f(h) with f(n)=A000984(n). - Philippe Deléham, Jan 22 2004
From Amiram Eldar, Jan 05 2022: (Start)
Sum_{n>=0} 1/a(n) = 108*log(4/3) - 30.
Sum_{n>=0} (-1)^n/a(n) = 300*log(5/4) - 66. (End)
E.g.f.: exp(4*x)*(3 + 36*x + 72*x^2 + 32*x^3)/3. - Stefano Spezia, Jan 01 2023

A269921 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 1.

Original entry on oeis.org

1, 10, 10, 70, 167, 70, 420, 1720, 1720, 420, 2310, 14065, 24164, 14065, 2310, 12012, 100156, 256116, 256116, 100156, 12012, 60060, 649950, 2278660, 3392843, 2278660, 649950, 60060, 291720, 3944928, 17970784, 36703824, 36703824, 17970784
Offset: 2

Views

Author

Gheorghe Coserea, Mar 14 2016

Keywords

Comments

Row n contains n-1 terms.

Examples

			Triangle starts:
n\f    [1]      [2]      [3]      [4]      [5]      [6]      [7]
[2]    1;
[3]    10,      10;
[4]    70,      167,     70;
[5]    420,     1720,    1720,    420;
[6]    2310,    14065,   24164,   14065,   2310;
[7]    12012,   100156,  256116,  256116,  100156,  12012;
[8]    60060,   649950,  2278660, 3392843, 2278660, 649950,  60060;
[9]    ...
		

Crossrefs

Columns f=1-10 give: A002802 f=1, A006295 f=2, A006296 f=3, A288071 f=4, A288072 f=5, A287046 f=6, A287047 f=7, A287048 f=8, A288073 f=9, A288074 f=10.
Row sums give A006300 (column 1 of A269919).
Cf. A006297 (row maxima).

Programs

  • Mathematica
    M = 9; G = 1; gMax[n_] := Min[Quotient[n, 2], G];
    Q = Array[0&, {M + 1, M + 1}];
    Qget[n_, g_] := If[g < 0 || g > n/2, 0, Q[[n + 1, g + 1]]];
    Qset[n_, g_, v_] := (Q[[n + 1, g + 1]] = v );
    Quadric[x_] := (Qset[0, 0, x]; For[n = 1, n <= Length[Q] - 1, n++, For[g = 0, g <= gMax[n], g++, t1 = (1 + x)*(2*n - 1)/3 * Qget[n - 1, g]; t2 = (2*n - 3)*(2*n - 2)*(2*n - 1)/12 * Qget[n - 2, g - 1]; t3 = 1/2 * Sum[ Sum[(2*k - 1) * (2*(n - k) - 1) * Qget[k - 1, i] * Qget[n - k - 1, g - i], {i, 0, g}], {k, 1, n-1}]; Qset[n, g, (t1 + t2 + t3) * 6/(n+1)]]]);
    Quadric[x];
    (List @@@ Table[Qget[n - 1 + 2*G, G] // Expand, {n, 1, M + 1 - 2*G}]) /. x -> 1 // Flatten (* Jean-François Alcover, Jun 13 2017, adapted from PARI *)
  • PARI
    N = 9; G = 1; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

A020918 Expansion of 1/(1-4*x)^(7/2).

Original entry on oeis.org

1, 14, 126, 924, 6006, 36036, 204204, 1108536, 5819814, 29745716, 148728580, 730122120, 3528923580, 16830250920, 79342611480, 370265520240, 1712478031110, 7857252142740, 35794148650260
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A000984 with A038845, also convolution of A000302 with A002802, also convolution of A002457 with A002697. - Rui Duarte, Oct 08 2011
5*a(n) is the number of (n+3) X 2 Young tableaux with a four horizontal walls between the first and second column. If there is a wall between two cells, the entries may be decreasing; see [Banderier, Wallner 2021], A000984 for one horizontal wall, A002457 for two, and A002802 for three. - Michael Wallner, Mar 09 2022

Crossrefs

Programs

  • GAP
    List([0..30], n-> Binomial(2*n+6, n+3)*Binomial(n+3, 3)/20); # G. C. Greubel, Jul 20 2019
  • Magma
    [Binomial(2*n+6, n+3)*Binomial(n+3, 3)/20: n in [0..30]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    seq(binomial(2*n,n)*binomial(n,(n-3))/20, n=2..21); # Zerinvary Lajos, May 05 2007
    seq(simplify(4^n*hypergeom([-n,-5/2], [1], 1)),n=0..18); # Peter Luschny, Apr 26 2016
  • Mathematica
    CoefficientList[Series[1/(1-4x)^(7/2), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 04 2013 *)
  • PARI
    vector(30, n, n--; binomial(2*n+6, n+3)*binomial(n+3, 3)/20 ) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [binomial(2*n+6, n+3)*binomial(n+3, 3)/20 for n in (0..30)] # G. C. Greubel, Jul 20 2019
    

Formula

a(n) = binomial(n+3, 3)*A000984(n+3)/A000984(3), where A000984 are the central binomial coefficients. - Wolfdieter Lang
a(n) ~ 8/15*Pi^(-1/2)*n^(5/2)*2^(2*n)*{1 + 35/8*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 22 2001
a(n) = Sum_{a+b+c+d+e+f+g=n} f(a)*f(b)*f(c)*f(d)*f(e)*f(f)*f(g) with f(n)=A000984(n). - Philippe Deléham, Jan 22 2004
a(n) = A000292(n)*A000984(n+2)/20. - Zerinvary Lajos, May 05 2007
From Rui Duarte, Oct 08 2011: (Start)
a(n) = ((2n+5)(2n+3)(2n+1)/(5*3*1)) * binomial(2n, n).
a(n) = binomial(2n+6, 6) * binomial(2n, n) / binomial(n+3, 3).
a(n) = binomial(n+3, 3) * binomial(2n+6, n+3) / binomial(6, 3). (End)
a(n) = 4^n*hypergeom([-n,-5/2], [1], 1). - Peter Luschny, Apr 26 2016
Boas-Buck recurrence: a(n) = (14/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, a(0) = 1. Proof from a(n) = A046521(n+3, 3). See a comment there. - Wolfdieter Lang, Aug 10 2017
From Amiram Eldar, Apr 07 2022: (Start)
Sum_{n>=0} 1/a(n) = 10*sqrt(3)*Pi - 160/3.
Sum_{n>=0} (-1)^n/a(n) = 10*sqrt(5)*log(phi) - 320/3, where phi is the golden ratio (A001622). (End)
D-finite with recurrence n*a(n) +2*(-2*n-5)*a(n-1)=0. - R. J. Mathar, Aug 01 2022

A040075 5-fold convolution of A000302 (powers of 4); expansion of 1/(1-4*x)^5.

Original entry on oeis.org

1, 20, 240, 2240, 17920, 129024, 860160, 5406720, 32440320, 187432960, 1049624576, 5725224960, 30534533120, 159719096320, 821412495360, 4161823309824, 20809116549120, 102821517066240, 502682972323840, 2434043865989120, 11683410556747776, 55635288365465600
Offset: 0

Views

Author

Keywords

Comments

Also convolution of A020920 with A000984 (central binomial coefficients).
With a different offset, number of n-permutations (n=5) of 5 objects u, v, w, z, x with repetition allowed, containing exactly four (4)u's. Example: a(1)=20 because we have uuuuv, uuuvu, uuvuu, uvuuu, vuuuu, uuuuw, uuuwu, uuwuu, uwuuu, wuuuu, uuuuz, uuuzu, uuzuu, uzuuu, zuuuu, uuuux, uuuxu, uuxuu, uxuuu and xuuuu. - Zerinvary Lajos, May 19 2008
Also convolution of A000302 with A038846, also convolution of A002457 with A020918, also convolution of A002697 with A038845, also convolution of A002802 with A002802. [Rui Duarte, Oct 08 2011]

Crossrefs

Programs

  • GAP
    List([0..30], n-> 4^n*Binomial(n+4, 4)); # G. C. Greubel, Jul 20 2019
  • Magma
    [4^n*Binomial(n+4, 4): n in [0..30]]; // Vincenzo Librandi, Oct 15 2011
    
  • Maple
    seq(seq(binomial(i, j)*4^(i-4), j =i-4), i=4..22); # Zerinvary Lajos, Dec 03 2007
    seq(binomial(n+4,4)*4^n,n=0..30); # Zerinvary Lajos, May 19 2008
    spec := [S, {B=Set(Z, 0 <= card), S=Prod(Z, Z, Z, Z, B, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n)/24, n=4..34); # Zerinvary Lajos, Apr 05 2009
  • Mathematica
    Table[Binomial[n+4,4]*4^n, {n,0,30}] (* Michael De Vlieger, Aug 21 2015 *)
  • PARI
    vector(30, n, n--; 4^n*binomial(n+4, 4)) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    [lucas_number2(n, 4, 0)*binomial(n,4)/2^8 for n in range(4, 34)] # Zerinvary Lajos, Mar 11 2009
    

Formula

a(n) = binomial(n+4, 4)*4^n.
G.f.: 1/(1-4*x)^5.
a(n) = Sum_{ i_1+i_2+i_3+i_4+i_5+i_6+i_7+i_8+i_9+i_10 = n } f(i_1)*f(i_2) *f(i_3)*f(i_4)*f(i_5)*f(i_6)*f(i_7)*f(i_8)*f(i_9)*f(i_10) with f(k)=A000984(k). - Rui Duarte, Oct 08 2011
E.g.f.: (3 + 48*x + 144*x^2 + 128*x^3 + 32*x^4)*exp(4*x)/3. - G. C. Greubel, Jul 20 2019
From Amiram Eldar, Mar 25 2022: (Start)
Sum_{n>=0} 1/a(n) = 376/3 - 432*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 2000*log(5/4) - 1336/3. (End)

A006298 Number of genus 2 rooted maps with 1 face with n vertices.

Original entry on oeis.org

21, 483, 6468, 66066, 570570, 4390386, 31039008, 205633428, 1293938646, 7808250450, 45510945480, 257611421340, 1422156202740, 7683009544980, 40729207226400, 212347275857640, 1090848505817070, 5530195966465170, 27704671055301240, 137308238124957900, 673903972248687180
Offset: 4

Views

Author

Keywords

Comments

Call C(p,[alpha],g) the number of partitions of the cyclically ordered set [p], of cyclic type [alpha], and of genus g (genus g Faa di Bruno coefficients of type [alpha]). The number C(2n,[2^n],g) of genus g partitions of the set [2n] into n blocks of length 2 is given by the coefficient of u^(2g) in the power series expansion of ((2*k)!/((k+1)!*(k-2g)!))*((u/2)/tanh(u/2))^(k+1) about the point u=0 [Harer-Zagier]. The given sequence a(n) is C(2n,[2^n],2), or, equivalently, it is the number of genus 2 partitions of the set [2n] into n parts with no singletons; it vanishes for n < 4 and a(4)=21. - Robert Coquereaux, Mar 07 2024

Examples

			G.f. = 21*x^4 + 483*x^5 + 6468*x^6 + 66066*x^7 + 570570*x^8 + 4390386*x^9 + ...
		

References

  • J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 475-485.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Cf. A035309.
Cf. A000108 for C(2n, [2^n], 0) and A002802 for C(2n, [2^n], 1).

Programs

  • Maple
    gf := 21*x^4*(x + 1)*(1 - 4*x)^(-11/2): ser := series(gf, x, 32):
    seq(coeff(ser, x, n), n = 4..24);  # Peter Luschny, Mar 07 2024
  • Mathematica
    CoefficientList[Series[21*x^4*(1 + x)/Sqrt[(1 - 4*x)^11], {x, 0, 50}]/x^4, x] (* G. C. Greubel, Jan 30 2017 *)
    a[n_] := ((-2 + 5 * n) * (2 * n)!)/(1440 * n! * (n - 4)!) (* Robert Coquereaux, Mar 07 2024 *)
  • PARI
    A006298(n) = if(n<4,0,if(n==4,21,((5*(n-1)+3)*(4*(n-1)+2)*A006298(n-1))/((5*(n-1)-2)*((n-1)-3)))); \\ Joerg Arndt, Apr 07 2013
    
  • PARI
    x='x+O('x^66);  Vec(21*x^4*(1+x)/sqrt((1-4*x)^11)) \\ Joerg Arndt, Apr 07 2013

Formula

D-finite with recurrence a(n+1) = ((5*n+3)*(4n*+2)*a(n))/((5*n-2)(n-3)).
G.f.: 21*x^4*(1+x)/sqrt((1-4*x)^11). a(n) = 21 * (A020922(n-4) + A020922(n-3)). - Ralf Stephan, Mar 13 2004 (g.f. corrected by Joerg Arndt, Apr 07 2013)
0 = a(n)*(+16*a(n+1) +62*a(n+2) +6*a(n+3)) +a(n+1)*(-38*a(n+1) -5*a(n+2) +17*a(n+3)) +a(n+2)*(-23*a(n+2) +a(n+3)) for all n in Z. - Michael Somos, Mar 30 2016
a(n) ~ n^(9/2) * 2^(2*n-5) / (9*sqrt(Pi)). - Vaclav Kotesovec, Mar 30 2016
a(n) = ((-2+5*n)*(2*n)!)/(1440*n!*(n-4)!) for n >= 4. - Robert Coquereaux, Mar 07 2024
Showing 1-10 of 46 results. Next