cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A006318 Large Schröder numbers (or large Schroeder numbers, or big Schroeder numbers).

Original entry on oeis.org

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718, 5293446, 27297738, 142078746, 745387038, 3937603038, 20927156706, 111818026018, 600318853926, 3236724317174, 17518619320890, 95149655201962, 518431875418926, 2832923350929742, 15521467648875090
Offset: 0

Views

Author

Keywords

Comments

For the little Schröder numbers (or little Schroeder numbers, or small Schroeder numbers) see A001003.
The number of perfect matchings in a triangular grid of n squares (n = 1, 4, 9, 16, 25, ...). - Roberto E. Martinez II, Nov 05 2001
a(n) is the number of subdiagonal paths from (0, 0) to (n, n) consisting of steps East (1, 0), North (0, 1) and Northeast (1, 1) (sometimes called royal paths). - David Callan, Mar 14 2004
Twice A001003 (except for the first term).
a(n) is the number of dissections of a regular (n+4)-gon by diagonals that do not touch the base. (A diagonal is a straight line joining two nonconsecutive vertices and dissection means the diagonals are noncrossing though they may share an endpoint. One side of the (n+4)-gon is designated the base.) Example: a(1)=2 because a pentagon has only 2 such dissections: the empty one and the one with a diagonal parallel to the base. - David Callan, Aug 02 2004
a(n) is the number of separable permutations, i.e., permutations avoiding 2413 and 3142 (see Shapiro and Stephens). - Vincent Vatter, Aug 16 2006
Eric W. Weisstein comments that the Schröder numbers bear the same relationship to the Delannoy numbers (A001850) as the Catalan numbers (A000108) do to the binomial coefficients. - Jonathan Vos Post, Dec 23 2004
a(n) is the number of lattice paths from (0, 0) to (n+1, n+1) consisting of unit steps north N = (0, 1) and variable-length steps east E = (k, 0), with k a positive integer, that stay strictly below the line y = x except at the endpoints. For example, a(2) = 6 counts 111NNN, 21NNN, 3NNN, 12NNN, 11N1NN, 2N1NN (east steps indicated by their length). If the word "strictly" is replaced by "weakly", the counting sequence becomes the little Schröder numbers, A001003 (offset). - David Callan, Jun 07 2006
a(n) is the number of dissections of a regular (n+3)-gon with base AB that do not contain a triangle of the form ABP with BP a diagonal. Example: a(1) = 2 because the square D-C | | A-B has only 2 such dissections: the empty one and the one with the single diagonal AC (although this dissection contains the triangle ABC, BC is not a diagonal). - David Callan, Jul 14 2006
a(n) is the number of (colored) Motzkin n-paths with each upstep and each flatstep at ground level getting one of 2 colors and each flatstep not at ground level getting one of 3 colors. Example: With their colors immediately following upsteps/flatsteps, a(2) = 6 counts U1D, U2D, F1F1, F1F2, F2F1, F2F2. - David Callan, Aug 16 2006
The Hankel transform of this sequence is A006125(n+1) = [1, 2, 8, 64, 1024, 32768, ...]; example: Det([1, 2, 6, 22; 2, 6, 22, 90; 6, 22, 90, 394; 22, 90, 394, 1806]) = 64. - Philippe Deléham, Sep 03 2006
Triangle A144156 has row sums equal to A006318 with left border A001003. - Gary W. Adamson, Sep 12 2008
a(n) is also the number of order-preserving and order-decreasing partial transformations (of an n-chain). Equivalently, it is the order of the Schröder monoid, PC sub n. - Abdullahi Umar, Oct 02 2008
Sum_{n >= 0} a(n)/10^n - 1 = (9 - sqrt(41))/2. - Mark Dols, Jun 22 2010
1/sqrt(41) = Sum_{n >= 0} Delannoy number(n)/10^n. - Mark Dols, Jun 22 2010
a(n) is also the dimension of the space Hoch(n) related to Hochschild two-cocycles. - Ph. Leroux (ph_ler_math(AT)yahoo.com), Aug 24 2010
Let W = (w(n, k)) denote the augmentation triangle (as at A193091) of A154325; then w(n, n) = A006318(n). - Clark Kimberling, Jul 30 2011
Conjecture: For each n > 2, the polynomial sum_{k = 0}^n a(k)*x^{n-k} is irreducible modulo some prime p < n*(n+1). - Zhi-Wei Sun, Apr 07 2013
From Jon Perry, May 24 2013: (Start)
Consider a Pascal triangle variant where T(n, k) = T(n, k-1) + T(n-1, k-1) + T(n-1, k), i.e., the order of performing the calculation must go from left to right (A033877). This sequence is the rightmost diagonal.
Triangle begins:
1;
1, 2;
1, 4, 6;
1, 6, 16, 22;
1, 8, 30, 68, 90;
... (End)
a(n) is the number of permutations avoiding 2143, 3142 and one of the patterns among 246135, 254613, 263514, 524361, 546132. - Alexander Burstein, Oct 05 2014
a(n) is the number of semi-standard Young tableaux of shape n x 2 with consecutive entries. That is, j in P and 1 <= i<= j imply i in P. - Graham H. Hawkes, Feb 15 2015
a(n) is the number of unary-rooted size n unary-binary trees (each node has either 1 or 2 degree out). - John Bodeen, May 29 2017
Conjecturally, a(n) is the number of permutations pi of length n such that s(pi) avoids the patterns 231 and 321, where s denotes West's stack-sorting map. - Colin Defant, Sep 17 2018
a(n) is the number of n X n permutation matrices which percolate under the 2-neighbor bootstrap percolation rule (see Shapiro and Stephens). The number of general n X n matrices of weight n which percolate is given in A146971. - Jonathan Noel, Oct 05 2018
a(n) is the number of permutations of length n+1 which avoid 3142 and 3241. The permutations are precisely the permutations that are sortable by a decreasing stack followed by an increasing stack in series. - Rebecca Smith, Jun 06 2019
a(n) is the number of permutations of length n+1 avoiding the partially ordered pattern (POP) {3>1, 4>1, 1>2} of length 4. That is, the number of length n+1 permutations having no subsequences of length 4 in which the second element is the smallest, and the first element is smaller than the third and fourth elements. - Sergey Kitaev, Dec 10 2020
Named after the German mathematician Ernst Schröder (1841-1902). - Amiram Eldar, Apr 15 2021
a(n) is the number of sequences of nonnegative integers (u_1, u_2, ..., u_n) such that (i) u_i <= i for all i, and (ii) the nonzero u_i are weakly increasing. For example, a(2) = 6 counts 00, 01, 02, 10, 11, 12. See link "Some bijections for lattice paths" at A001003. - David Callan, Dec 18 2021
a(n) is the number of separable elements of the Weyl group of type B_n/C_n (see Gaetz and Gao). - Fern Gossow, Jul 31 2023
The number of domino tilings of an Aztec triangle of order n. Dually, the number perfect matchings of the edges in the cellular graph formed by a triangular grid of n squares (n = 1, 4, 9, 16, 25, ...) as in Ciucu (1996). - Michael Somos, Sep 16 2024
a(n) is the number of dissections of a convex (n+3)-sided polygon by non-intersecting diagonals such that none of the dividing diagonals passes through a chosen vertex. - Muhammed Sefa Saydam, Mar 01 2025
a(n) is the number of dissections of a convex (n+m+1)-sided polygon by non-intersecting diagonals such that the selected m consecutive sides of the polygon will be in the same subpolygon. - Muhammed Sefa Saydam, Jul 02 2025

Examples

			a(3) = 22 since the top row of Q^n = (6, 6, 6, 4, 0, 0, 0, ...); where 22 = (6 + 6 + 6 + 4).
G.f. = 1 + 2*x + 6*x^2 + 22*x^3 + 90*x^4 + 394*x^5 + 1806*x^6 + 8858*x^7 + 41586*x^8 + ...
		

References

  • D. Andrica and E. J. Ionascu, On the number of polynomials with coefficients in [n], An. St. Univ. Ovidius Constanta, 2013, to appear.
  • Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.4.
  • Paul Barry, Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences, Journal of Integer Sequences, Vol. 15 2012, #12.8.2.
  • Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
  • Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19, 2016, #16.3.5.
  • O. Bodini, A. Genitrini, F. Peschanski, and N.Rolin, Associativity for binary parallel processes, CALDAM 2015.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 24, 618.
  • S. Brlek, E. Duchi, E. Pergola, and S. Rinaldi, On the equivalence problem for succession rules, Discr. Math., 298 (2005), 142-154.
  • Xiang-Ke Chang, XB Hu, H Lei, and YN Yeh, Combinatorial proofs of addition formulas, The Electronic Journal of Combinatorics, 23(1) (2016), #P1.8.
  • William Y. C. Chen and Carol J. Wang, Noncrossing Linked Partitions and Large (3, 2)-Motzkin Paths, Discrete Math., 312 (2012), 1918-1922.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81, #21, (4), q_n.
  • D. E. Davenport, L. W. Shapiro, and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012), #P33.
  • Deng, Eva Y. P.; Dukes, Mark; Mansour, Toufik; and Wu, Susan Y. J.; Symmetric Schröder paths and restricted involutions. Discrete Math. 309 (2009), no. 12, 4108-4115. See p. 4109.
  • E. Deutsch, A bijective proof of an equation linking the Schroeder numbers, large and small, Discrete Math., 241 (2001), 235-240.
  • C. Domb and A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358.
  • Doslic, Tomislav and Veljan, Darko. Logarithmic behavior of some combinatorial sequences. Discrete Math. 308 (2008), no. 11, 2182--2212. MR2404544 (2009j:05019) - From N. J. A. Sloane, May 01 2012
  • M. Dziemianczuk, Generalizing Delannoy numbers via counting weighted lattice paths, INTEGERS, 13 (2013), #A54.
  • Egge, Eric S., Restricted signed permutations counted by the Schröder numbers. Discrete Math. 306 (2006), 552-563. [Many applications of these numbers.]
  • S. Getu et al., How to guess a generating function, SIAM J. Discrete Math., 5 (1992), 497-499.
  • S. Gire, Arbres, permutations a motifs exclus et cartes planaire: quelques problemes algorithmiques et combinatoires, Ph.D. Thesis, Universite Bordeaux I, 1993.
  • N. S. S. Gu, N. Y. Li, and T. Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
  • Guruswami, Venkatesan, Enumerative aspects of certain subclasses of perfect graphs. Discrete Math. 205 (1999), 97-117.
  • Silvia Heubach and Toufik Mansour, Combinatorics of Compositions and Words, CRC Press, 2010.
  • D. E. Knuth, The Art of Computer Programming, Vol. 1, Section 2.2.1, Problem 11.
  • D. Kremer, Permutations with forbidden subsequences and a generalized Schröder number, Discrete Math. 218 (2000) 121-130.
  • Kremer, Darla and Shiu, Wai Chee; Finite transition matrices for permutations avoiding pairs of length four patterns. Discrete Math. 268 (2003), 171-183. MR1983276 (2004b:05006). See Table 1.
  • Laradji, A. and Umar, A. Asymptotic results for semigroups of order-preserving partial transformations. Comm. Algebra 34 (2006), 1071-1075. - Abdullahi Umar, Oct 11 2008
  • L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Math., 26 (1961), 223-229.
  • L. Shapiro and A. B. Stephens, Bootstrap percolation, the Schröder numbers and the N-kings problem, SIAM J. Discrete Math., Vol. 4 (1991), pp. 275-280.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see page 178 and also Problems 6.39 and 6.40.
  • Lin Yang and S.-L. Yang, The parametric Pascal rhombus. Fib. Q., 57:4 (2019), 337-346.
  • Sheng-Liang Yang and Mei-yang Jiang, The m-Schröder paths and m-Schröder numbers, Disc. Math. (2021) Vol. 344, Issue 2, 112209. doi:10.1016/j.disc.2020.112209. See Table 1.

Crossrefs

Apart from leading term, twice A001003 (the small Schroeder numbers). Cf. A025240.
Sequences A085403, A086456, A103137, A112478 are essentially the same sequence.
Main diagonal of A033877.
Row sums of A104219. Bisections give A138462, A138463.
Row sums of A175124.
The sequences listed in Yang-Jiang's Table 1 appear to be A006318, A001003, A027307, A034015, A144097, A243675, A260332, A243676. - N. J. A. Sloane, Mar 28 2021

Programs

  • GAP
    Concatenation([1],List([1..25],n->(1/n)*Sum([0..n],k->2^k*Binomial(n,k)*Binomial(n,k-1)))); # Muniru A Asiru, Nov 29 2018
  • Haskell
    a006318 n = a004148_list !! n
    a006318_list = 1 : f [1] where
       f xs = y : f (y : xs) where
         y = head xs + sum (zipWith (*) xs $ reverse xs)
    -- Reinhard Zumkeller, Nov 13 2012
    
  • Maple
    Order := 24: solve(series((y-y^2)/(1+y),y)=x,y); # then A(x)=y(x)/x
    BB:=(-1-z-sqrt(1-6*z+z^2))/2: BBser:=series(BB, z=0, 24): seq(coeff(BBser, z, n), n=1..23); # Zerinvary Lajos, Apr 10 2007
    A006318_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 2*a[w-1]+add(a[j]*a[w-j-1], j=1..w-1) od; convert(a,list)end: A006318_list(22); # Peter Luschny, May 19 2011
    A006318 := n-> add(binomial(n+k, n-k) * binomial(2*k, k)/(k+1), k=0..n): seq(A006318(n), n=0..22); # Johannes W. Meijer, Jul 14 2013
    seq(simplify(hypergeom([-n,n+1],[2],-1)), n=0..100); # Robert Israel, Mar 23 2015
  • Mathematica
    a[0] = 1; a[n_Integer] := a[n] = a[n - 1] + Sum[a[k]*a[n - 1 - k], {k, 0, n - 1}]; Array[a[#] &, 30]
    InverseSeries[Series[(y - y^2)/(1 + y), {y, 0, 24}], x] (* then A(x) = y(x)/x *) (* Len Smiley, Apr 11 2000 *)
    CoefficientList[Series[(1 - x - (1 - 6x + x^2)^(1/2))/(2x), {x, 0, 30}], x] (* Harvey P. Dale, May 01 2011 *)
    a[ n_] := 2 Hypergeometric2F1[ -n + 1, n + 2, 2, -1]; (* Michael Somos, Apr 03 2013 *)
    a[ n_] := With[{m = If[ n < 0, -1 - n, n]}, SeriesCoefficient[(1 - x - Sqrt[ 1 - 6 x + x^2])/(2 x), {x, 0, m}]]; (* Michael Somos, Jun 10 2015 *)
    Table[-(GegenbauerC[n+1, -1/2, 3] + KroneckerDelta[n])/2, {n, 0, 30}] (* Vladimir Reshetnikov, Nov 12 2016 *)
    CoefficientList[Nest[1+x(#+#^2)&, 1+O[x], 20], x] (* Oliver Seipel, Dec 21 2024 *)
  • PARI
    {a(n) = if( n<0, n = -1-n); polcoeff( (1 - x - sqrt( 1 - 6*x + x^2 + x^2 * O(x^n))) / 2, n+1)}; /* Michael Somos, Apr 03 2013 */
    
  • PARI
    {a(n) = if( n<1, 1, sum( k=0, n, 2^k * binomial( n, k) * binomial( n, k-1)) / n)};
    
  • Python
    from gmpy2 import divexact
    A006318 = [1, 2]
    for n in range(3,10**3):
        A006318.append(int(divexact(A006318[-1]*(6*n-9)-(n-3)*A006318[-2],n)))
    # Chai Wah Wu, Sep 01 2014
    
  • Sage
    # Generalized algorithm of L. Seidel
    def A006318_list(n) :
        D = [0]*(n+1); D[1] = 1
        b = True; h = 1; R = []
        for i in range(2*n) :
            if b :
                for k in range(h,0,-1) : D[k] += D[k-1]
                h += 1;
            else :
                for k in range(1,h, 1) : D[k] += D[k-1]
                R.append(D[h-1]);
            b = not b
        return R
    A006318_list(23) # Peter Luschny, Jun 02 2012
    

Formula

G.f.: (1 - x - (1 - 6*x + x^2)^(1/2))/(2*x).
a(n) = 2*hypergeom([-n+1, n+2], [2], -1). - Vladeta Jovovic, Apr 24 2003
For n > 0, a(n) = (1/n)*Sum_{k = 0..n} 2^k*C(n, k)*C(n, k-1). - Benoit Cloitre, May 10 2003
The g.f. satisfies (1 - x)*A(x) - x*A(x)^2 = 1. - Ralf Stephan, Jun 30 2003
For the asymptotic behavior, see A001003 (remembering that A006318 = 2*A001003). - N. J. A. Sloane, Apr 10 2011
From Philippe Deléham, Nov 28 2003: (Start)
Row sums of A088617 and A060693.
a(n) = Sum_{k = 0..n} C(n+k, n)*C(n, k)/(k+1). (End)
With offset 1: a(1) = 1, a(n) = a(n-1) + Sum_{i = 1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
a(n) = Sum_{k = 0..n} A000108(k)*binomial(n+k, n-k). - Benoit Cloitre, May 09 2004
a(n) = Sum_{k = 0..n} A011117(n, k). - Philippe Deléham, Jul 10 2004
a(n) = (CentralDelannoy(n+1) - 3 * CentralDelannoy(n))/(2*n) = (-CentralDelannoy(n+1) + 6 * CentralDelannoy(n) - CentralDelannoy(n-1))/2 for n >= 1, where CentralDelannoy is A001850. - David Callan, Aug 16 2006
From Abdullahi Umar, Oct 11 2008: (Start)
A123164(n+1) - A123164(n) = (2*n+1)*a(n) (n >= 0).
and 2*A123164(n) = (n+1)*a(n) - (n-1)*a(n-1) (n > 0). (End)
Define the general Delannoy numbers d(i, j) as in A001850. Then a(k) = d(2*k, k) - d(2*k, k-1) and a(0) = 1, Sum_{j=0..n} ((-1)^j * (d(n, j) + d(n-1, j-1)) * a(n-j)) = 0. - Peter E John, Oct 19 2006
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example, Phi([1]) is the Catalan numbers A000108. The present sequence is (essentially) Phi([2]). - Gary W. Adamson, Oct 27 2008
G.f.: 1/(1-2x/(1-x/(1-2x/(1-x/(1-2x/(1-x/(1-2x/(1-x/(1-2x/(1-x.... (continued fraction). - Paul Barry, Dec 08 2008
G.f.: 1/(1 - x - x/(1 - x - x/(1 - x - x/(1 - x - x/(1 - x - x/(1 - ... (continued fraction). - Paul Barry, Jan 29 2009
a(n) ~ ((3 + 2*sqrt(2))^n)/(n*sqrt(2*Pi*n)*sqrt(3*sqrt(2) - 4))*(1-(9*sqrt(2) + 24)/(32*n) + ...). - G. Nemes (nemesgery(AT)gmail.com), Jan 25 2009
Logarithmic derivative yields A002003. - Paul D. Hanna, Oct 25 2010
a(n) = the upper left term in M^(n+1), M = the production matrix:
1, 1, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
2, 2, 1, 1, 0, 0, ...
4, 4, 2, 1, 1, 0, ...
8, 8, 8, 2, 1, 1, ...
... - Gary W. Adamson, Jul 08 2011
a(n) is the sum of top row terms in Q^n, Q = an infinite square production matrix as follows:
1, 1, 0, 0, 0, 0, ...
1, 1, 2, 0, 0, 0, ...
1, 1, 1, 2, 0, 0, ...
1, 1, 1, 1, 2, 0, ...
1, 1, 1, 1, 1, 2, ...
... - Gary W. Adamson, Aug 23 2011
From Tom Copeland, Sep 21 2011: (Start)
With F(x) = (1 - 3*x - sqrt(1 - 6*x + x^2))/(2*x) an o.g.f. (nulling the n = 0 term) for A006318, G(x) = x/(2 + 3*x + x^2) is the compositional inverse.
Consequently, with H(x) = 1/ (dG(x)/dx) = (2 + 3*x + x^2)^2 / (2 - x^2),
a(n) = (1/n!)*[(H(x)*d/dx)^n] x evaluated at x = 0, i.e.,
F(x) = exp[x*H(u)*d/du] u, evaluated at u = 0. Also, dF(x)/dx = H(F(x)). (End)
a(n-1) = number of ordered complete binary trees with n leaves having k internal vertices colored black, the remaining n - 1 - k internal vertices colored white, and such that each vertex and its rightmost child have different colors ([Drake, Example 1.6.7]). For a refinement of this sequence see A175124. - Peter Bala, Sep 29 2011
D-finite with recurrence: (n-2)*a(n-2) - 3*(2*n-1)*a(n-1) + (n+1)*a(n) = 0. - Vaclav Kotesovec, Oct 05 2012
G.f.: A(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) = (1 - G(0))/x; G(k) = 1 + x - 2*x/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 04 2012
G.f.: A(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) = (G(0) - 1)/x; G(k) = 1 - x/(1 - 2/G(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Jan 04 2012
a(n+1) = a(n) + Sum_{k=0..n} a(k)*(n-k). - Reinhard Zumkeller, Nov 13 2012
G.f.: 1/Q(0) where Q(k) = 1 + k*(1 - x) - x - x*(k+1)*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(-1-n) = a(n). - Michael Somos, Apr 03 2013
G.f.: 1/x - 1 - U(0)/x, where U(k) = 1 - x - x/U(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: (2 - 2*x - G(0))/(4*x), where G(k) = 1 + 1/( 1 - x*(6 - x)*(2*k - 1)/(x*(6 - x)*(2*k - 1) + 2*(k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
a(n) = 1/(n + 1) * (Sum_{j=0..n} C(n+j, j)*C(n+j+1, j+1)*(Sum_{k=0..n-j} (-1)^k*C(n+j+k, k))). - Graham H. Hawkes, Feb 15 2015
a(n) = hypergeom([-n, n+1], [2], -1). - Peter Luschny, Mar 23 2015
a(n) = sqrt(2) * LegendreP(n, -1, 3) where LegendreP is the associated Legendre function of the first kind (in Maple's notation). - Robert Israel, Mar 23 2015
G.f. A(x) satisfies: A(x) = Sum_{j>=0} x^j * Sum_{k=0..j} binomial(j,k)*A(x)^k. - Ilya Gutkovskiy, Apr 11 2019
From Peter Bala, May 13 2024: (Start)
a(n) = 2 * Sum_{k = 0..floor(n/2)} binomial(n, 2*k)*binomial(2*n-2*k, n)/(n-2*k+1) for n >= 1.
a(n) = Integral_{x = 0..1} Legendre_P(n, 2*x+1) dx. (End)
G.f. A(x) = 1/(1 - x) * c(x/(1-x)^2), where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the g.f. of the Catalan numbers A000108. - Peter Bala, Aug 29 2024

Extensions

Edited by Charles R Greathouse IV, Apr 20 2010

A090181 Triangle of Narayana (A001263) with 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 20, 10, 1, 0, 1, 15, 50, 50, 15, 1, 0, 1, 21, 105, 175, 105, 21, 1, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 0, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 0, 1, 55, 825, 4950, 13860
Offset: 0

Views

Author

Philippe Deléham, Jan 19 2004

Keywords

Comments

Number of Dyck n-paths with exactly k peaks. - Peter Luschny, May 10 2014

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,  1;
[3] 0, 1,  3,   1;
[4] 0, 1,  6,   6,    1;
[5] 0, 1, 10,  20,   10,    1;
[6] 0, 1, 15,  50,   50,   15,    1;
[7] 0, 1, 21, 105,  175,  105,   21,   1;
[8] 0, 1, 28, 196,  490,  490,  196,  28,  1;
[9] 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
		

Crossrefs

Mirror image of triangle A131198. A000108 (row sums, Catalan).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n) for x=0,1,2,3,4,5,6,7,8,9. - Philippe Deléham, Aug 10 2006
Sum_{k=0..n} x^(n-k)*T(n,k) = A090192(n+1), A000012(n), A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Oct 21 2006
Sum_{k=0..n} T(n,k)*x^k*(x-1)^(n-k) = A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - Philippe Deléham, Oct 20 2007

Programs

  • Magma
    [[(&+[(-1)^(j-k)*Binomial(2*n-j,j)*Binomial(j,k)*Binomial(2*n-2*j,n-j)/(n-j+1): j in [0..n]]): k in [0..n]]: n in [0..10]];
  • Maple
    A090181 := (n,k) -> binomial(n,n-k)*binomial(n-1,n-k)/(n-k+1):
    seq(print( seq(A090181(n,k),k=0..n)),n=0..5); # Peter Luschny, May 10 2014
    egf := 1+int((sqrt(t)*exp((1+t)*x)*BesselI(1,2*sqrt(t)*x))/x,x);
    s := n -> n!*coeff(series(egf,x,n+2),x,n);
    seq(print(seq(coeff(s(n),t,j),j=0..n)),n=0..9); # Peter Luschny, Oct 30 2014
    T := proc(n, k) option remember; if k = n or k = 1 then 1 elif k < 1 then 0 else (2*n/k - 1) * T(n-1, k-1) + T(n-1, k) fi end:
    for n from 0 to 8 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Dec 31 2024
  • Mathematica
    Flatten[Table[Sum[(-1)^(j-k) * Binomial[2n-j,j] * Binomial[j,k] * CatalanNumber[n-j], {j, 0, n}], {n,0,11},{k,0,n}]] (* Indranil Ghosh, Mar 05 2017 *)
    p[0, ] := 1; p[1, x] := x; p[n_, x_] := ((2 n - 1) (1 + x) p[n - 1, x] - (n - 2) (x - 1)^2 p[n - 2, x]) / (n + 1);
    Table[CoefficientList[p[n, x], x], {n, 0, 9}] // TableForm (* Peter Luschny, Apr 26 2022 *)
  • PARI
    c(n) = binomial(2*n,n)/ (n+1);
    tabl(nn) = {for(n=0, nn, for(k=0, n, print1(sum(j=0, n, (-1)^(j-k) * binomial(2*n-j,j) * binomial(j,k) * c(n-j)),", ");); print(););};
    tabl(11); \\ Indranil Ghosh, Mar 05 2017
    
  • Python
    from functools import cache
    @cache
    def Trow(n):
        if n == 0: return [1]
        if n == 1: return [0, 1]
        if n == 2: return [0, 1, 1]
        A = Trow(n - 2) + [0, 0]
        B = Trow(n - 1) + [1]
        for k in range(n - 1, 1, -1):
            B[k] = (((B[k] + B[k - 1]) * (2 * n - 1)
                   - (A[k] - 2 * A[k - 1] + A[k - 2]) * (n - 2)) // (n + 1))
        return B
    for n in range(10): print(Trow(n)) # Peter Luschny, May 02 2022
    
  • Sage
    def A090181_row(n):
        U = [0]*(n+1)
        for d in DyckWords(n):
            U[d.number_of_peaks()] +=1
        return U
    for n in range(8): A090181_row(n) # Peter Luschny, May 10 2014
    

Formula

Triangle T(n, k), read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938. T(0, 0) = 1, T(n, 0) = 0 for n>0, T(n, k) = C(n-1, k-1)*C(n, k-1)/k for k>0.
Sum_{j>=0} T(n,j)*binomial(j,k) = A060693(n,k). - Philippe Deléham, May 04 2007
Sum_{k=0..n} T(n,k)*10^k = A143749(n+1). - Philippe Deléham, Oct 14 2008
From Paul Barry, Nov 10 2008: (Start)
Coefficient array of the polynomials P(n,x) = x^n*2F1(-n,-n+1;2;1/x).
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*C(2n-j,j)*C(j,k)*A000108(n-j). (End)
Sum_{k=0..n} T(n,k)*5^k*3^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
Sum_{k=0..n} T(n,k)*(-2)^k = A152681(n); Sum_{k=0..n} T(n,k)*(-1)^k = A105523(n). - Philippe Deléham, Feb 03 2009
Sum_{k=0..n} T(n,k)*2^(n+k) = A156017(n). - Philippe Deléham, Nov 27 2011
T(n, k) = C(n,n-k)*C(n-1,n-k)/(n-k+1). - Peter Luschny, May 10 2014
E.g.f.: 1+Integral((sqrt(t)*exp((1+t)*x)*BesselI(1,2*sqrt(t)*x))/x dx). - Peter Luschny, Oct 30 2014
G.f.: (1+x-x*y-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x). - Alois P. Heinz, Nov 28 2021, edited by Ron L.J. van den Burg, Dec 19 2021
T(n, k) = [x^k] (((2*n - 1)*(1 + x)*p(n-1, x) - (n - 2)*(x - 1)^2*p(n-2, x))/(n + 1)) with p(0, x) = 1 and p(1, x) = x. - Peter Luschny, Apr 26 2022
Recursion based on rows (see the Python program):
T(n, k) = (((B(k) + B(k-1))*(2*n - 1) - (A(k) - 2*A(k-1) + A(k-2))*(n-2))/(n+1)), where A(k) = T(n-2, k) and B(k) = T(n-1, k), for n >= 3. # Peter Luschny, May 02 2022

A088617 Triangle read by rows: T(n,k) = C(n+k,n)*C(n,k)/(k+1), for n >= 0, k = 0..n.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 6, 10, 5, 1, 10, 30, 35, 14, 1, 15, 70, 140, 126, 42, 1, 21, 140, 420, 630, 462, 132, 1, 28, 252, 1050, 2310, 2772, 1716, 429, 1, 36, 420, 2310, 6930, 12012, 12012, 6435, 1430, 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862
Offset: 0

Views

Author

N. J. A. Sloane, Nov 23 2003

Keywords

Comments

Row sums: A006318 (Schroeder numbers). Essentially same as triangle A060693 transposed.
T(n,k) is number of Schroeder paths (i.e., consisting of steps U=(1,1), D=(1,-1), H=(2,0) and never going below the x-axis) from (0,0) to (2n,0), having k U's. E.g., T(2,1)=3 because we have UHD, UDH and HUD. - Emeric Deutsch, Dec 06 2003
Little Schroeder numbers A001003 have a(n) = Sum_{k=0..n} A088617(n,k)*(-1)^(n-k)*2^k. - Paul Barry, May 24 2005
Conjecture: The expected number of U's in a Schroeder n-path is asymptotically Sqrt[1/2]*n for large n. - David Callan, Jul 25 2008
T(n, k) is also the number of order-preserving and order-decreasing partial transformations (of an n-chain) of width k (width(alpha) = |Dom(alpha)|). - Abdullahi Umar, Oct 02 2008
The antidiagonals of this lower triangular matrix are the rows of A055151. - Tom Copeland, Jun 17 2015

Examples

			Triangle begins:
  [0] 1;
  [1] 1,  1;
  [2] 1,  3,   2;
  [3] 1,  6,  10,    5;
  [4] 1, 10,  30,   35,    14;
  [5] 1, 15,  70,  140,   126,    42;
  [6] 1, 21, 140,  420,   630,   462,   132;
  [7] 1, 28, 252, 1050,  2310,  2772,  1716,   429;
  [8] 1, 36, 420, 2310,  6930, 12012, 12012,  6435,  1430;
  [9] 1, 45, 660, 4620, 18018, 42042, 60060, 51480, 24310, 4862;
		

References

  • Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 449.

Crossrefs

Programs

  • Magma
    [[Binomial(n+k,n)*Binomial(n,k)/(k+1): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Jun 18 2015
    
  • Maple
    R := n -> simplify(hypergeom([-n, n + 1], [2], -x)):
    Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
    seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
  • Mathematica
    Table[Binomial[n+k, n] Binomial[n, k]/(k+1), {n,0,10}, {k,0,n}]//Flatten (* Michael De Vlieger, Aug 10 2017 *)
  • PARI
    {T(n, k)= if(k+1, binomial(n+k, n)*binomial(n, k)/(k+1))}
    
  • SageMath
    flatten([[binomial(n+k, 2*k)*catalan_number(k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 22 2022

Formula

Triangle T(n, k) read by rows; given by [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
T(n, k) = A085478(n, k)*A000108(k); A000108 = Catalan numbers. - Philippe Deléham, Dec 05 2003
Sum_{k=0..n} T(n, k)*x^k*(1-x)^(n-k) = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Aug 18 2005
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A107841(n), A080243(n), A000007(n), A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Oct 18 2007
O.g.f. (with initial 1 excluded) is the series reversion with respect to x of (1-t*x)*x/(1+x). Cf. A062991 and A089434. - Peter Bala, Jul 31 2012
G.f.: 1 + (1 - x - T(0))/y, where T(k) = 1 - x*(1+y)/( 1 - x*y/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 03 2013
From Peter Bala, Jul 20 2015: (Start)
O.g.f. A(x,t) = ( 1 - x - sqrt((1 - x)^2 - 4*x*t) )/(2*x*t) = 1 + (1 + t)*x + (1 + 3*t + 2*t^2)*x^2 + ....
1 + x*(dA(x,t)/dx)/A(x,t) = 1 + (1 + t)*x + (1 + 4*t + 3*t^2)*x^2 + ... is the o.g.f. for A123160.
For n >= 1, the n-th row polynomial equals (1 + t)/(n+1)*Jacobi_P(n-1,1,1,2*t+1). Removing a factor of 1 + t from the row polynomials gives the row polynomials of A033282. (End)
From Tom Copeland, Jan 22 2016: (Start)
The o.g.f. G(x,t) = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/2x = (t + t^2) x + (t + 3t^2 + 2t^3) x^2 + (t + 6t^2 + 10t^3 + 5t^3) x^3 + ... generating shifted rows of this entry, excluding the first, was given in my 2008 formulas for A033282 with an o.g.f. f1(x,t) = G(x,t)/(1+t) for A033282. Simple transformations presented there of f1(x,t) are related to A060693 and A001263, the Narayana numbers. See also A086810.
The inverse of G(x,t) is essentially given in A033282 by x1, the inverse of f1(x,t): Ginv(x,t) = x [1/(t+x) - 1/(1+t+x)] = [((1+t) - t) / (t(1+t))] x - [((1+t)^2 - t^2) / (t(1+t))^2] x^2 + [((1+t)^3 - t^3) / (t(1+t))^3] x^3 - ... . The coefficients in t of Ginv(xt,t) are the o.g.f.s of the diagonals of the Pascal triangle A007318 with signed rows and an extra initial column of ones. The numerators give the row o.g.f.s of signed A074909.
Rows of A088617 are shifted columns of A107131, whose reversed rows are the Motzkin polynomials of A055151, related to A011973. The diagonals of A055151 give the rows of A088671, and the antidiagonals (top to bottom) of A088617 give the rows of A107131 and reversed rows of A055151. The diagonals of A107131 give the columns of A055151. The antidiagonals of A088617 (bottom to top) give the rows of A055151.
(End)
T(n, k) = [x^k] hypergeom([-n, 1 + n], [2], -x). - Peter Luschny, Apr 26 2022

A033282 Triangle read by rows: T(n, k) is the number of diagonal dissections of a convex n-gon into k+1 regions.

Original entry on oeis.org

1, 1, 2, 1, 5, 5, 1, 9, 21, 14, 1, 14, 56, 84, 42, 1, 20, 120, 300, 330, 132, 1, 27, 225, 825, 1485, 1287, 429, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 1, 54, 936, 7644, 34398, 91728, 148512, 143208, 75582, 16796
Offset: 3

Views

Author

Keywords

Comments

T(n+3, k) is also the number of compatible k-sets of cluster variables in Fomin and Zelevinsky's cluster algebra of finite type A_n. Take a row of this triangle regarded as a polynomial in x and rewrite as a polynomial in y := x+1. The coefficients of the polynomial in y give a row of the triangle of Narayana numbers A001263. For example, x^2 + 5*x + 5 = y^2 + 3*y + 1. - Paul Boddington, Mar 07 2003
Number of standard Young tableaux of shape (k+1,k+1,1^(n-k-3)), where 1^(n-k-3) denotes a sequence of n-k-3 1's (see the Stanley reference).
Number of k-dimensional 'faces' of the n-dimensional associahedron (see Simion, p. 168). - Mitch Harris, Jan 16 2007
Mirror image of triangle A126216. - Philippe Deléham, Oct 19 2007
For relation to Lagrange inversion or series reversion and the geometry of associahedra or Stasheff polytopes (and other combinatorial objects) see A133437. - Tom Copeland, Sep 29 2008
Row generating polynomials 1/(n+1)*Jacobi_P(n,1,1,2*x+1). Row n of this triangle is the f-vector of the simplicial complex dual to an associahedron of type A_n [Fomin & Reading, p. 60]. See A001263 for the corresponding array of h-vectors for associahedra of type A_n. See A063007 and A080721 for the f-vectors for associahedra of type B and type D respectively. - Peter Bala, Oct 28 2008
f-vectors of secondary polytopes for Grobner bases for optimization and integer programming (see De Loera et al. and Thomas). - Tom Copeland, Oct 11 2011
From Devadoss and O'Rourke's book: The Fulton-MacPherson compactification of the configuration space of n free particles on a line segment with a fixed particle at each end is the n-Dim Stasheff associahedron whose refined f-vector is given in A133437 which reduces to A033282. - Tom Copeland, Nov 29 2011
Diagonals of A132081 are rows of A033282. - Tom Copeland, May 08 2012
The general results on the convolution of the refined partition polynomials of A133437, with u_1 = 1 and u_n = -t otherwise, can be applied here to obtain results of convolutions of these polynomials. - Tom Copeland, Sep 20 2016
The signed triangle t(n, k) =(-1)^k* T(n+2, k-1), n >= 1, k = 1..n, seems to be obtainable from the partition array A111785 (in Abramowitz-Stegun order) by adding the entries corresponding to the partitions of n with the number of parts k. E.g., triangle t, row n=4: -1, (6+3) = 9, -21, 14. - Wolfdieter Lang, Mar 17 2017
The preceding conjecture by Lang is true. It is implicit in Copeland's 2011 comments in A086810 on the relations among a gf and its compositional inverse for that entry and inversion through A133437 (a differently normalized version of A111785), whose integer partitions are the same as those for A134685. (An inversion pair in Copeland's 2008 formulas below can also be used to prove the conjecture.) In addition, it follows from the relation between the inversion formula of A111785/A133437 and the enumeration of distinct faces of associahedra. See the MathOverflow link concernimg Loday and the Aguiar and Ardila reference in A133437 for proofs of the relations between the partition polynomials for inversion and enumeration of the distinct faces of the A_n associahedra, or Stasheff polytopes. - Tom Copeland, Dec 21 2017
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)/(n!*(n+1)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Oct 07 2022
Chapoton's observation above is correct: the precise expansion is (x+1)*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)/ (n!*(n+1)!) = Sum_{k = 0..n-1} (-1)^k*T(n+2,n-k-1)*binomial(x+2*n-k,2*n-k), as can be verified using the WZ algorithm. For example, n = 4 gives (x+1)*(x+2)^2*(x+3)^2*(x+4)^2*(x+5)/(4!*5!) = 14*binomial(x+8,8) - 21*binomial(x+7,7) + 9*binomial(x+6,6) - binomial(x+5,5). - Peter Bala, Jun 24 2023

Examples

			The triangle T(n, k) begins:
n\k  0  1   2    3     4     5      6      7     8     9
3:   1
4:   1  2
5:   1  5   5
6:   1  9  21   14
7:   1 14  56   84    42
8:   1 20 120  300   330   132
9:   1 27 225  825  1485  1287    429
10:  1 35 385 1925  5005  7007   5005   1430
11:  1 44 616 4004 14014 28028  32032  19448  4862
12:  1 54 936 7644 34398 91728 148512 143208 75582 16796
... reformatted. - _Wolfdieter Lang_, Mar 17 2017
		

References

  • S. Devadoss and J. O'Rourke, Discrete and Computational Geometry, Princeton Univ. Press, 2011 (See p. 241.)
  • Ronald L. Graham, Donald E. Knuth, Oren Patashnik, Concrete Mathematics, 2nd ed., Addison-Wesley, 1994. Exercise 7.50, pages 379, 573.
  • T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Section 5.8.

Crossrefs

Cf. diagonals: A000012, A000096, A033275, A033276, A033277, A033278, A033279; A000108, A002054, A002055, A002056, A007160, A033280, A033281; row sums: A001003 (Schroeder numbers, first term omitted). See A086810 for another version.
A007160 is a diagonal. Cf. A001263.
With leading zero: A086810.
Cf. A019538 'faces' of the permutohedron.
Cf. A063007 (f-vectors type B associahedra), A080721 (f-vectors type D associahedra), A126216 (mirror image).
Cf. A248727 for a relation to f-polynomials of simplices.
Cf. A111785 (contracted partition array, unsigned; see a comment above).
Antidiagonal sums give A005043. - Jordan Tirrell, Jun 01 2017

Programs

  • Magma
    [[Binomial(n-3, k)*Binomial(n+k-1, k)/(k+1): k in [0..(n-3)]]: n in [3..12]];  // G. C. Greubel, Nov 19 2018
    
  • Maple
    T:=(n,k)->binomial(n-3,k)*binomial(n+k-1,k)/(k+1): seq(seq(T(n,k),k=0..n-3),n=3..12); # Muniru A Asiru, Nov 24 2018
  • Mathematica
    t[n_, k_] = Binomial[n-3, k]*Binomial[n+k-1, k]/(k+1);
    Flatten[Table[t[n, k], {n, 3, 12}, {k, 0, n-3}]][[1 ;; 52]] (* Jean-François Alcover, Jun 16 2011 *)
  • PARI
    Q=(1+z-(1-(4*w+2+O(w^20))*z+z^2+O(z^20))^(1/2))/(2*(1+w)*z);for(n=3,12,for(m=1,n-2,print1(polcoef(polcoef(Q,n-2,z),m,w),", "))) \\ Hugo Pfoertner, Nov 19 2018
    
  • PARI
    for(n=3,12, for(k=0,n-3, print1(binomial(n-3,k)*binomial(n+k-1,k)/(k+1), ", "))) \\ G. C. Greubel, Nov 19 2018
    
  • Sage
    [[ binomial(n-3,k)*binomial(n+k-1,k)/(k+1) for k in (0..(n-3))] for n in (3..12)] # G. C. Greubel, Nov 19 2018

Formula

G.f. G = G(t, z) satisfies (1+t)*G^2 - z*(1-z-2*t*z)*G + t*z^4 = 0.
T(n, k) = binomial(n-3, k)*binomial(n+k-1, k)/(k+1) for n >= 3, 0 <= k <= n-3.
From Tom Copeland, Nov 03 2008: (Start)
Two g.f.s (f1 and f2) for A033282 and their inverses (x1 and x2) can be derived from the Drake and Barry references.
1. a: f1(x,t) = y = {1 - (2t+1) x - sqrt[1 - (2t+1) 2x + x^2]}/[2x (t+1)] = t x + (t + 2 t^2) x^2 + (t + 5 t^2 + 5 t^3) x^3 + ...
b: x1 = y/[t + (2t+1)y + (t+1)y^2] = y {1/[t/(t+1) + y] - 1/(1+y)} = (y/t) - (1+2t)(y/t)^2 + (1+ 3t + 3t^2)(y/t)^3 +...
2. a: f2(x,t) = y = {1 - x - sqrt[(1-x)^2 - 4xt]}/[2(t+1)] = (t/(t+1)) x + t x^2 + (t + 2 t^2) x^3 + (t + 5 t^2 + 5 t^3) x^4 + ...
b: x2 = y(t+1) [1- y(t+1)]/[t + y(t+1)] = (t+1) (y/t) - (t+1)^3 (y/t)^2 + (t+1)^4 (y/t)^3 + ...
c: y/x2(y,t) = [t/(t+1) + y] / [1- y(t+1)] = t/(t+1) + (1+t) y + (1+t)^2 y^2 + (1+t)^3 y^3 + ...
x2(y,t) can be used along with the Lagrange inversion for an o.g.f. (A133437) to generate A033282 and show that A133437 is a refinement of A033282, i.e., a refinement of the f-polynomials of the associahedra, the Stasheff polytopes.
y/x2(y,t) can be used along with the indirect Lagrange inversion (A134264) to generate A033282 and show that A134264 is a refinement of A001263, i.e., a refinement of the h-polynomials of the associahedra.
f1[x,t](t+1) gives a generator for A088617.
f1[xt,1/t](t+1) gives a generator for A060693, with inverse y/[1 + t + (2+t) y + y^2].
f1[x(t-1),1/(t-1)]t gives a generator for A001263, with inverse y/[t + (1+t) y + y^2].
The unsigned coefficients of x1(y t,t) are A074909, reverse rows of A135278. (End)
G.f.: 1/(1-x*y-(x+x*y)/(1-x*y/(1-(x+x*y)/(1-x*y/(1-(x+x*y)/(1-x*y/(1-.... (continued fraction). - Paul Barry, Feb 06 2009
Let h(t) = (1-t)^2/(1+(u-1)*(1-t)^2) = 1/(u + 2*t + 3*t^2 + 4*t^3 + ...), then a signed (n-1)-th row polynomial of A033282 is given by u^(2n-1)*(1/n!)*((h(t)*d/dt)^n) t, evaluated at t=0, with initial n=2. The power series expansion of h(t) is related to A181289 (cf. A086810). - Tom Copeland, Sep 06 2011
With a different offset, the row polynomials equal 1/(1 + x)*Integral_{0..x} R(n,t) dt, where R(n,t) = Sum_{k = 0..n} binomial(n,k)*binomial(n+k,k)*t^k are the row polynomials of A063007. - Peter Bala, Jun 23 2016
n-th row polynomial = ( LegendreP(n-1,2*x + 1) - LegendreP(n-3,2*x + 1) )/((4*n - 6)*x*(x + 1)), n >= 3. - Peter Bala, Feb 22 2017
n*T(n+1, k) = (4n-6)*T(n, k-1) + (2n-3)*T(n, k) - (n-3)*T(n-1, k) for n >= 4. - Fang Lixing, May 07 2019

Extensions

Missing factor of 2 for expansions of f1 and f2 added by Tom Copeland, Apr 12 2009

A103210 a(n) = (1/n) * Sum_{i=0..n-1} C(n,i)*C(n,i+1)*2^i*3^(n-i), a(0)=1.

Original entry on oeis.org

1, 3, 15, 93, 645, 4791, 37275, 299865, 2474025, 20819307, 178003815, 1541918901, 13503125805, 119352115551, 1063366539315, 9539785668657, 86104685123025, 781343125570515, 7124072211203775, 65233526296899981, 599633539433039445, 5531156299278726663
Offset: 0

Views

Author

Ralf Stephan, Jan 27 2005

Keywords

Comments

The Hankel transform of this sequence is 6^C(n+1,2). - Philippe Deléham, Oct 28 2007
The Hankel transform of the sequence starting 1, 1, 3, 15, ... is A081955. - Paul Barry, Dec 09 2008
Number of Schroeder paths from (0,0) to (0,2n) allowing two colors for the down steps (or alternatively for the rise steps). - Paul Barry, Feb 01 2009
Essentially, reversion of x*(1-2*x)/(1+x). - Paul Barry, Apr 28 2009
a(n) is also the number of infix expressions with n variables and operators +, - and * (or +, * and /) such that there are no redundant parentheses. - Vjeran Crnjak, Apr 25 2020

Crossrefs

Third column of array A103209.

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 25); Coefficients(R!((1-x-Sqrt(x^2-10*x+1))/(4*x))); // G. C. Greubel, Feb 10 2018
    
  • Maple
    A103210 := proc(n)
        if n = 0 then
            1;
        else
            add(binomial(n,i)*binomial(n,i+1)*2^i*3^(n-i),i=0..n-1)/n ;
        end if;
    end proc: # R. J. Mathar, Feb 10 2015
    A103210_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 3*a[w-1] + 2*add(a[j]*a[w-j-1], j=1..w-1) od;
    convert(a, list) end: A103210_list(21); # Peter Luschny, Feb 29 2016
  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[x^2-10*x+1])/(4*x), {x, 0, 25}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
    A103210[n_]:= Hypergeometric2F1[-n, n+1, 2, -2]; Table[A103210[n], {n, 0, 25}] (* Peter Luschny, Jan 07 2018 *)
  • PARI
    my(x='x+O('x^25)); Vec((1-x-sqrt(x^2-10*x+1))/(4*x)) \\ G. C. Greubel, Feb 10 2018
    
  • Sage
    [1]+[(3^n/n)*sum( binomial(n,j)*binomial(n,j+1)*(2/3)^j for j in (0..n-1)) for n in (1..25)] # G. C. Greubel, Jun 08 2020

Formula

G.f.: (1 - z - sqrt(1 -10*z +z^2))/(4*z).
a(n) = Sum_{k=0..n} C(n+k, 2k) * 2^k * C(k), C(n) given by A000108. - Paul Barry, May 21 2005
a(n) = Sum_{k=0..n} A060693(n,k)*2^(n-k). - Philippe Deléham, Apr 02 2007
a(0) = 1, a(n) = a(n-1) + 2*Sum_{k=0..n-1} a(k)*a(n-1-k). - Philippe Deléham, Oct 23 2007
a(n) = (3/2)*A107841(n) for n > 0. - Philippe Deléham, Oct 28 2007
G.f.: 1/(1-x-2*x/(1-x-2*x/(1-x-2*x/(1-.... (continued fraction). - Paul Barry, Feb 01 2009
G.f.: 1/(1-3*x-6*x^2/(1-5*x-6*x^2/(1-5*x-6*x^2/(1-... (continued fraction). - Paul Barry, Apr 28 2009
G.f.: 1/(1-3*x/(1-2*x/(1-3*x/(1-2*x/(1-3*x/(1-... (continued fraction). - Paul Barry, May 14 2009
a(n) = Hypergeometric2F1(-n,n+1;2;-2) = Sum_{k=0..n} C(n+k,k) * C(n,k) * 2^k/(k+1). - Paul Barry, Feb 08 2011
G.f.: A(x) = (1-x-(x^2-10*x+1)^(1/2))/(4*x) = 1/(G(0)-x); G(k)= 1 + x - 3*x/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 05 2012
D-finite with recurrence: (n+1)*a(n) = 5*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(12+5*sqrt(6))*(5+2*sqrt(6))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
G.f. A(x) satisfies: A(x) = (1 + 2*x*A(x)^2) / (1 - x). - Ilya Gutkovskiy, Jun 30 2020

Extensions

Spelling/notation corrections by Charles R Greathouse IV, Mar 18 2010

A097610 Triangle read by rows: T(n,k) is number of Motzkin paths of length n and having k horizontal steps.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 1, 2, 0, 6, 0, 1, 0, 10, 0, 10, 0, 1, 5, 0, 30, 0, 15, 0, 1, 0, 35, 0, 70, 0, 21, 0, 1, 14, 0, 140, 0, 140, 0, 28, 0, 1, 0, 126, 0, 420, 0, 252, 0, 36, 0, 1, 42, 0, 630, 0, 1050, 0, 420, 0, 45, 0, 1, 0, 462, 0, 2310, 0, 2310, 0, 660, 0, 55, 0, 1, 132, 0, 2772, 0
Offset: 0

Views

Author

Emeric Deutsch, Aug 30 2004

Keywords

Comments

Row sums are the Motzkin numbers (A001006). Column 0 gives the aerated Catalan numbers (A000108).
Let P_n(x) = Sum_{k=0..n} T(n,k)*x^k. P_0(x) = 1, P_1(x) = x, P_n(x) = x*P_(n-1)(x) + Sum_{j=0..n-2} P_j(x)*P_(n-2-j)(x); essentially the same as A124027. - Philippe Deléham, Oct 03 2007
G. J. Chaitin's numbers of s-expressions of size n are given by the coefficients of polynomials p(k, x) satisfying: p(k, x) = Sum_{j=2..k-1} p(j, x)*p(k-j, x). The coefficients of these polynomials also give (essentially) the triangle shown here. - Roger L. Bagula, Oct 31 2006
Exponential Riordan array [Bessel_I(1,2x)/x,x]. - Paul Barry, Mar 24 2010
Diagonal sums are the aerated large Schroeder numbers. - Paul Barry, Apr 21 2010
Non-vanishing antidiagonals are rows of A060693. - Tom Copeland, Feb 03 2016
These polynomials are related to the Gegenbauer polynomials which in turn are specializations of the Jacobi polynomials. The o.g.f. of the Gegenbauer polynomials is 1 / [1-2tx+x^2]^a. For the generating function Gb(x,h1,h2,a) = [x / (1 + h1 x + h2 x^2)]^a, the compositional inverse in x is Gbinv(x,h1,h2,a) = [(1-h1*y) - sqrt[(1-h1*y)^2-4h2*y^2]]/(2*h2*y) with y = x^(1/a). The polynomials of this entry are generated by Gbinv(x,t,1,1). The Legendre polynomials are related to the o.g.f. Gb(x,-2t,1,1/2). Cf. A121448. - Tom Copeland, Feb 07 2016
The bivariate o.g.f. in Copeland's Jan 29 2016 formulas can be related to conformal mappings of the complex plane and a solution of the dKP hierarchy. Cf. p. 24 of the Takebe et al. paper. - Tom Copeland, May 30 2018

Examples

			Triangle begins:
1;
0,  1;
1,  0,  1;
0,  3,  0,  1;
2,  0,  6,  0,  1;
0, 10,  0, 10,  0,  1;
5,  0, 30,  0, 15,  0,  1;
Row n has n+1 terms.
T(4,2)=6 because we have HHUD, HUDH, UDHH, HUHD, UHDH, UHHD, where U=(1,1), D=(1,-1) and H=(1,0).
		

References

  • G. J. Chaitin, Algorithmic Information Theory, Cambridge Univ. Press, 1987, page 169.

Crossrefs

Cf. A001006, A000108. A124027 is an essentially identical triangle.
Cf. A001263.

Programs

  • Maple
    G:=(1-t*z-sqrt(1-2*t*z+t^2*z^2-4*z^2))/2/z^2:
    Gser:=simplify(series(G,z=0,16)): P[0]:=1:
    for n from 1 to 13 do P[n]:=sort(coeff(Gser,z^n)) od:
    seq(seq(coeff(t*P[n],t^k),k=1..n+1),n=0..13);
    # Maple program for the triangular array:
    T:=proc(n,k) if n-k mod 2 = 0 and k<=n then n!/k!/((n-k)/2)!/((n-k)/2+1)! else 0 fi end: TT:=(n,k)->T(n-1,k-1): matrix(10,10,TT);
  • Mathematica
    T[n_,k_]:=If[n>=k&&EvenQ[n-k],n!/(k!((n-k)/2)!((n-k)/2+1)!),0];
    Flatten[Table[T[n,k],{n,0,20},{k,0,n}]] (* Peter J. C. Moses, Apr 06 2013 *)
    T[n_,k_] := If[OddQ[n - k], 0, Binomial[n, k] CatalanNumber[(n - k)/2]]; (* Peter Luschny, Jun 06 2018 *)

Formula

G.f.: [1-tz-sqrt(1-2tz+t^2*z^2-4z^2)]/(2z^2).
T(n, k) = n!/[k!((n-k)/2)!((n-k)/2-1)! ] = A055151(n, (n-k)/2) if n-k is a nonnegative even number; otherwise T(n, k) = 0.
T(n, k) = C(n, k)*C((n-k)/2)*(1+(-1)^(n-k))/2 if k <= n, 0 otherwise. - Paul Barry, May 18 2005
T(n,k) = A121448(n,k)/2^k. - Philippe Deléham, Aug 17 2006
Sum_{k=0..n} T(n,k)*2^k = A000108(n+1). - Philippe Deléham, Aug 22 2006
Sum_{k=0..n} T(n,k)*3^k = A002212(n+1). - Philippe Deléham, Oct 03 2007
G.f.: 1/(1-x*y-x^2/(1-x*y-x^2/(1-x*y-x^2/.... (continued fraction). - Paul Barry, Dec 15 2008
Sum_{k=0..n} T(n,k)*4^k = A005572(n). - Philippe Deléham, Dec 03 2009
T(n,k) = A007318(n,k)*A126120(n-k). - Philippe Deléham, Dec 12 2009
From Tom Copeland, Jan 23 2016: (Start)
E.g.f.: M(x,t) = e^(xt) AC(t) = e^(xt) I_1(2t)/t = e(xt) * e.g.f.(A126120(t)) = e^(xt) Sum_{n>=0} t^(2n)/(n!(n+1)!) = exp[t P(.,x)].
The e.g.f. of this Appell sequence of polynomials P(n,x) is e^(xt) times the e.g.f. AC(t) of the aerated Catalan numbers A126120. AC(t) = I_1(2t)/t, where I_n(x) = T_n(d/dx) I_0(x) are the modified Bessel functions of the first kind and T_n, the Chebyshev polynomials of the first kind.
P(n,x) has the lowering and raising operators L = d/dx = D and R = d/dD log{M(x,D)} = x + d/dD log{AC(D)} = x + Sum_{n>=0} c(n) D^(2n+1)/(2n+1)! with c(n) = (-1)^n A180874(n+1), i.e., L P(n,x) = n P(n-1,x) and R P(n,x) = P(n+1,x).
(P(.,x) + y)^n = P(n,x+y) = Sum_{k=0..n} binomial(n,k) P(k,x) y^(n-k) = (b.+x+y)^n, where (b.)^k = b_k = A126120(k).
Exp(b.D) e^(xt) = exp[(x+b.)t] = exp[P(.,x)t] = e^(b.t) e^(xt) = e^(xt) AC(t).
See p. 12 of the Alexeev et al. link and A055151 for a refinement.
Shifted o.g.f: G(x,t) = [1-tx-sqrt[(1-tx)^2-4x^2]] / 2x = x + t x^2 + (1+t) x^3 + ... has the compositional inverse Ginv(x,t) = x / [1 + tx + x^2] = x - t x^2 +(-1+t^2) x^3 + (2t-t^3) x^4 + (1-3t^2+t^4) x^5 + ..., a shifted o.g.f. for the signed Chebyshev polynomials of the second kind of A049310 (cf. also the Fibonacci polynomials of A011973). Then the inversion formula of A134264, involving non-crossing partitions and free probability with their multitude of interpretations (cf. A125181 also), can be used with h_0 = 1, h_1 = t, and h_2 = 1 to interpret the coefficients of the Motzkin polynomials combinatorially.
(End)
From Tom Copeland, Jan 29 2016: (Start)
Provides coefficients of the inverse of f(x) = x / [1 + h1 x + h2 x^2], a bivariate generating function of A049310 (mod signs).
finv(x) = [(1-h1*x) - sqrt[(1-h1*x)^2-4h2*x^2]]/(2*h2*x) = x + h1 x^2 + (h2 + h1^2) x^3 + (3 h1 h2 + h1^3) x^4 + ... is a bivariate o.g.f. for this entry.
The infinitesimal generator for finv(x) is g(x) d/dx with g(x) = 1 /[df(x)/dx] = x^2 / [(f(x))^2 (1 - h2 x^2)] = (1 + h1 x + h2 x^2)^2 / (1 - h2 x^2) so that [g(x)d/dx]^n/n! x evaluated at x = 0 gives the row polynomials FI(n,h1,h2) of the compositional inverse of f(x), i.e., exp[x g(u)d/du] u |_(u=0) = finv(x) = 1 / [1 -x FI(.,h1,h2)]. Cf. A145271. E.g.,
FI(0,h1,h2) = 0
FI(1,h1,h2) = 1
FI(2,h1,h2) = 1 h1
FI(3,h1,h2) = 1 h2 + 1 h1^2
FI(4,h1,h2) = 3 h2 h1 + 1 h1^3
FI(5,h1,h2) = 2 h2^2 + 6 h2 h1^2 + 1 h1^4
FI(6,h1,h2) = 10 h2^2 h1 + 10 h2 h1^3 + 1 h1^5.
And with D = d/dh1, FI(n+1, h1,h2) = MT(n,h1,h2) = (b.y + h1)^n = Sum_{k=0..n} binomial(n,k) b(k) y^k h1^(n-k) = exp[(b.y D] (h1)^n = AC(y D) (h1)^n, where b(k) = A126120(k), y = sqrt(h2), and AC(t) is defined in my Jan 23 formulas above. Equivalently, AC(y D) e^(x h1) = exp[x MT(.,h1,h2)].
The MT polynomials comprise an Appell sequence in h1 with e.g.f. e^(h1*x) AC(xy) = exp[x MT(.,h1,h2)] with lowering operator L = d/dh1 = D, i.e., L MT(n,h1,h2) = dMT(n,h1,h2)/dh1 = n MT(n-1,h1,h2) and raising operator R = h1 + dlog{AC(y L)}/dL = h1 + Sum_{n>=0} c(n) h2^(n+1) D^(2n+1)/(2n+1)! = h1 + h2 d/dh1 - h2^2 (d/dh1)^3/3! + 5 h2^3 (d/dh1)^5/5! - ... with c(n) = (-1)^n A180874(n+1) (consistent with the raising operator in the Jan 23 formulas).
The compositional inverse finv(x) is also obtained from the non-crossing partitions of A134264 (or A125181) with h_0 = 1, h_1 = h1, h_2 = h2, and h_n = 0 for all other n.
See A238390 for the umbral compositional inverse in h1 of MT(n,h1,h2) and inverse matrix.
(End)
From Tom Copeland, Feb 13 2016: (Start)
z1(x,h1,h2) = finv(x), the bivariate o.g.f. above for this entry, is the zero that vanishes for x=0 for the quadratic polynomial Q(z;z1(x,h1,h2),z2(x,h1,h2)) = (z-z1)(z-z2) = z^2 - (z1+z2) z + (z1*z2) = z^2 - e1 z + e2 = z^2 - [(1-h1*x)/(h2*x)] z + 1/h2, where e1 and e2 are the elementary symmetric polynomials for two indeterminates.
The other zero is given by z2(x,h1,h2) = (1 - h1*x)/(h2*x) - z1(x,h1,h2) = [1 - h1*x + sqrt[(1-h1*x)^2 - 4 h2*x^2]] / (2h2*x).
The two are the nontrivial zeros of the elliptic curve in Legendre normal form y^2 = z (z-z1)(z-z2), (see Landweber et al., p. 14, Ellingsrud, and A121448), and the zeros for the Riccati equation z' = (z - z1)(z - z2), associated to soliton solutions of the KdV equation (see Copeland link).
(End)
Comparing the shifted o.g.f. S(x) = x / (1 - h_1 x + h_2 x^2) for the bivariate Chebyshev polynomials S_n(h_1,h_2) of A049310 with the shifted o.g.f. H(x) = x / ((1 - a x)(1 - b x)) for the complete homogeneous symmetric polynomials H_n(a,b) = (a^(n+1)-b^(n+1)) / (a - b) shows that S_n(h_1,h_2) = H_n(a,b) for h_1 = a + b and h_2 = ab and, conversely, a = (h_1 + sqrt(h_1^2 - 4 h_2)) / 2 and b = (h_1 - sqrt(h_1^2 - 4 h_2)) / 2. The compositional inverse about the origin of S(x) gives a bivariate o.g.f. for signed Motzkin polynomials M_n(h_1,h_2) of this entry, and that of H(x) gives one for signed Narayana polynomials N_n(a,b) of A001263, thereby relating the bivariate Motzkin and Narayana polynomials by the indeterminate transformations. E.g., M_2(h_1,h_2) = h_2 + h_1^2 = ab + (a + b)^2 = a^2 + 3 ab + b^2 = N_2(a,b). - Tom Copeland, Jan 27 2024

A103211 a(n) = (1/n) * Sum_{i=0..n-1} C(n,i)*C(n,i+1)*3^i*4^(n-i), a(0)=1.

Original entry on oeis.org

1, 4, 28, 244, 2380, 24868, 272188, 3080596, 35758828, 423373636, 5092965724, 62071299892, 764811509644, 9511373563492, 119231457692284, 1505021128450516, 19112961439180588, 244028820862442116, 3130592301487969948, 40333745806536135028, 521655330655122923980
Offset: 0

Views

Author

Ralf Stephan, Jan 27 2005

Keywords

Comments

The Hankel transform of this sequence is 12^C(n+1,2). - Philippe Deléham, Oct 28 2007
The sequence 1, 1, 4, 28, ... has a(n) = 0^n + Sum_{k=0..n-1} C(n+k-1, 2*k)*C(k)*3^k and Hankel transform 3^C(n+1, 2)*4^C(n, 2). - Paul Barry, Dec 09 2008
Number of Dyck n-paths with two colors of up (U,u) and two colors of down (D,d) avoiding DU. - David Scambler, Jun 24 2013

Examples

			G.f. = 1 + 4*x + 28*x^2 + 244*x^3 + 2380*x^4 + 24868*x^5 + ... _Michael Somos_, Mar 15 2024
		

Crossrefs

Fourth column of array A103209.
Cf. A131763.

Programs

  • GAP
    a:=n->(1/n)*Sum([0..n-1],i->Binomial(n,i)*Binomial(n,i+1)*
    3^i*4^(n-i));;
    A103211:=Concatenation([1],List([1..20],n->a(n))); # Muniru A Asiru, Feb 11 2018
  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-x-Sqrt(x^2-14*x+1))/(6*x))) // G. C. Greubel, Feb 10 2018
    
  • Maple
    A103211_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := a[w-1] + 3*add(a[j]*a[w-j-1], j=0..w-1) od;
    convert(a, list) end: A103211_list(20); # Peter Luschny, Feb 29 2016
  • Mathematica
    CoefficientList[Series[(1-x-Sqrt[x^2-14*x+1])/(6*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 17 2012 *)
    a[n_] := Sum[(-1)^(n - k) Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 2, 4], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Peter Luschny, Jan 08 2018 *)
    a[ n_] := If[n < 0, a[-1-n], SeriesCoefficient[2/(1 - x + Sqrt[1 - 14*x + x^2]), {x, 0, n}]]; (* Michael Somos, Mar 15 2024 *)
  • PARI
    x='x+O('x^30); Vec((1-x-sqrt(x^2-14*x+1))/(6*x)) \\ G. C. Greubel, Feb 10 2018
    
  • PARI
    {a(n) = if(n<0, a(-1-n), polcoeff(2/(1 - x + sqrt(1 - 14*x + x^2 + x*O(x^n))), n))}; /* Michael Somos, Mar 15 2024 */
    

Formula

G.f.: (1-z-sqrt(z^2-14*z+1))/(6*z).
a(n) = Sum_{k=0..n} C(n+k,2k)*3^k*C(k), C(n) given by A000108. - Paul Barry, May 21 2005
a(n) = Sum_{k=0..n} A060693(n,k)*3^(n-k). - Philippe Deléham, Apr 02 2007
a(0)=1, a(n) = a(n-1) + 3*Sum_{k=0..n-1} a(k)*a(n-1-k). - Philippe Deléham, Oct 23 2007
G.f.: 1/(1-x-3*x/(1-x-3*x/(1-x-3*x/(1-x-3*x/(1-... (continued fraction). - Paul Barry, Nov 07 2009
D-finite with recurrence: (n+1)*a(n) = 7*(2*n-1)*a(n-1) - (n-2)*a(n-2). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ sqrt(24+14*sqrt(3))*(7+4*sqrt(3))^n/(6*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
a(n) = Sum_{k=0..n} (-1)^(n-k) binomial(n,k)*hypergeom([k - n, n + 1], [k + 2], 4). - Peter Luschny, Jan 08 2018
G.f. A(x) satisfies: A(x) = (1 + 3*x*A(x)^2) / (1 - x). - Ilya Gutkovskiy, Jun 30 2020
From Michael Somos, Mar 15 2024: (Start)
a(n) = (4/3)*A131763(n) for n>0.
Given g.f. A(x) and y = -x*A(-x^2), then 3*y-1/y = x+1/x.
If a(n) := a(-1-n) for n<0, then 0 = a(n)*(+a(n+1) -35*a(n+2) +4*a(n+3)) +a(n+1)*(+7*a(n+1) +194*a(n+2) -35*a(n+3)) +a(n+2)*(+7*a(n+2) +a(n+3)) for all n in Z. (End)

A082298 Expansion of (1-3*x-sqrt(9*x^2-10*x+1))/(2*x).

Original entry on oeis.org

1, 4, 20, 116, 740, 5028, 35700, 261780, 1967300, 15072836, 117297620, 924612532, 7367204260, 59240277988, 480118631220, 3917880562644, 32163325863300, 265446382860420, 2201136740855700, 18329850024033012, 153225552507991140
Offset: 0

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

More generally coefficients of (1-m*x-sqrt(m^2*x^2-(2*m+4)*x+1))/(2*x) are given by a(0)=1 and, for n>0, a(n) = (1/n)*Sum_{k=0..n}(m+1)^k*binomial(n,k)*binomial(n,k-1).
a(n) = number of lattice paths from (0,0) to (n+1,n+1) that consist of steps (i,0) and (0,j) with i,j>=1 and that stay strictly below the diagonal line y=x except at the endpoints. (See Coker reference.) Equivalently, a(n) = number of marked Dyck (n+1)-paths where the vertices in the middle of each UU and each DD are available to be marked (or not): consider the original path as a Dyck path with a mark at each vertex where two horizontal (or two vertical) steps abut. If only the UU vertices are available for marking, then the counting sequence is the little Schroeder number A001003. - David Callan, Jun 07 2006
Hankel transform is 4^C(n+1,2). - Philippe Deléham, Feb 11 2009
a(n) is the number of Schroder paths of semilength n in which the (2,0)-steps come in 3 colors. Example: a(2)=20 because, denoting U=(1,1), H=(2,0), D=(1,-1), we have 3^2=9 paths of shape HH, 3 paths of shape HUD, 3 paths of shape UDH, 3 paths of shape UHD, and 1 path of each of the shapes UDUD, UUDD. - Emeric Deutsch, May 02 2011
(1 + 4x + 20x^2 + 116x^3 + ...) = (1 + 5x + 29x^2 + 185x^3 + ...) * 1/(1 + x + 5x^2 + 29x^3 +185x^4 + ...); where A059231 = (1, 5, 29, 185, 1257, ...) - Gary W. Adamson, Nov 17 2011
The first differences between the row sums of the triangle A226392. - J. M. Bergot, Jun 21 2013

Crossrefs

Programs

  • Magma
    Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((1-3*x-Sqrt(9*x^2-10*x+1))/(2*x))); // G. C. Greubel, Feb 10 2018
  • Maple
    A082298_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := 4*a[w-1]+add(a[j]*a[w-j-1], j=1..w-1) od;convert(a,list)end: A082298_list(20); # Peter Luschny, May 19 2011
    a := n -> `if`(n=0, 1, 4*hypergeom([1 - n, -n], [2], 4)):
    seq(simplify(a(n)), n=0..20); # Peter Luschny, May 22 2017
  • Mathematica
    gf[x_] = (1 - 3*x - Sqrt[(9*x^2 - 10*x + 1)])/(2*x); CoefficientList[Series[gf[x], {x, 0, 20}], x] (* Jean-François Alcover, Jun 01 2011 *)
  • PARI
    a(n)=if(n<1,1,sum(k=0,n,4^k*binomial(n,k)*binomial(n,k-1))/n)
    

Formula

a(0)=1, n>0 a(n) = (1/n)*Sum_{k=0..n} 4^k*binomial(n, k)*binomial(n, k-1).
a(1)=1, a(n) = 3*a(n-1) + Sum_{i=1..n-1} a(i)*a(n-i). - Benoit Cloitre, Mar 16 2004
a(n) = Sum_{k=0..n} 1/(n+1) Binomial(n+1,k)Binomial(2n-k,n-k)3^k. - David Callan, Jun 07 2006
From Paul Barry, Feb 01 2009: (Start)
G.f.: 1/(1-3x-x/(1-3x-x/(1-3x-x/(1-... (continued fraction);
a(n) = Sum_{k=0..n} binomial(n+k,2k)*3^(n-k)*A000108(k). (End)
a(n) = Sum_{k=0..n} A060693(n,k)*3^k. - Philippe Deléham, Feb 11 2009
D-finite with recurrence: (n+1)*a(n) = 5*(2n-1)*a(n-1)-9*(n-2)*a(n-2). - Paul Barry, Oct 22 2009
G.f.: 1/(1- 4x/(1-x/(1-4x/(1-x/(1-4x/(1-... (continued fraction). - Aoife Hennessy (aoife.hennessy(AT)gmail.com), Dec 02 2009
G.f.: (1-3*x-sqrt(9*x^2-10*x+1))/(2*x) = (1-G(0))/x; G(k) = 1+x*3-x*4/G(k+1); (continued fraction, 1-step). - Sergei N. Gladkovskii, Jan 05 2012
a(n) ~ 3^(2*n+1)/(sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 14 2012
a(n) = 4*hypergeom([1 - n, -n], [2], 4) for n>0. - Peter Luschny, May 22 2017
G.f. A(x) satisfies: A(x) = (1 + x*A(x)^2) / (1 - 3*x). - Ilya Gutkovskiy, Jun 30 2020
G.f.: (1+2*x*F(x))^2, where F(x) is the g.f. for A099250. - Alexander Burstein, May 11 2021

A104684 Triangle read by rows: T(n,k) is the number of lattice paths from (0,0) to (n,n) using steps E=(1,0), N=(0,1) and D=(1,1) (i.e., bilateral Schroeder paths), having k D=(1,1) steps.

Original entry on oeis.org

1, 2, 1, 6, 6, 1, 20, 30, 12, 1, 70, 140, 90, 20, 1, 252, 630, 560, 210, 30, 1, 924, 2772, 3150, 1680, 420, 42, 1, 3432, 12012, 16632, 11550, 4200, 756, 56, 1, 12870, 51480, 84084, 72072, 34650, 9240, 1260, 72, 1, 48620, 218790, 411840, 420420, 252252
Offset: 0

Views

Author

Emeric Deutsch, Apr 24 2005

Keywords

Comments

Row sums are the central Delannoy numbers (A001850). T(n,0)=A000984(n) (the central binomial numbers). Alternating row sums = 1 See the Bataille link.
Row reversed version of A063007.
Another version of [0, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] = 1; 0, 1; 0, 2, 1; 0, 6, 6, 1; 0, 20, 30, 12, 1; 0, 70, 140, 90, 20, 1; ..., where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 25 2005
Terms in row n are the coefficients of the Legendre polynomial P(n,2x+1) with decreasing powers of x.
Coefficient array of x^n*Legendre_P(n,2/x+1). - Paul Barry, Apr 19 2009

Examples

			T(2,1)=6 because we have NED, NDE, EDN, END, DEN and DNE.
The triangle T(n, k) begins:
n\k    0     1     2     3     4    5    6  7 8 ...
0:     1
1:     2     1
2:     6     6     1
3:    20    30    12     1
4:    70   140    90    20    1
5:   252   630   560   210   30     1
6:   924  2772  3150  1680  420    42    1
7:  3432 12012 16632 11550 4200   756   56  1
8: 12870 51480 84084 72072 34650 9240 1260 72 1
...
row n=9: 48620 218790 411840 420420 252252 90090 18480 1980 90 1,
row n=10: 184756 923780 1969110 2333760 1681680 756756 210210 34320 2970 110 1.
... reformatted by _Wolfdieter Lang_, Sep 11 2016
		

Crossrefs

Programs

  • Haskell
    a104684 n k = a104684_tabl !! n !! k
    a104684_row n = a104684_tabl !! n
    a104684_tabl = map (map abs) $
                   zipWith (zipWith (*)) a130595_tabl a092392_tabl
    -- Reinhard Zumkeller, Dec 20 2013
  • Maple
    T:=(n,k)->binomial(n,k)*binomial(2*n-k,n): for n from 0 to 9 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    T[n_, k_] := Binomial[n, k] Binomial[2n-k, n];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 19 2018 *)

Formula

T(n, k) = binomial(n, k)*binomial(2n-k, n) (0 <= k <= n).
G.f.: G(t, z) = 1/sqrt((1-tz)^2 - 4z).
T(n,k) = binomial(2(n-k),n-k)*binomial(2n-k,k). - Paul Barry, Mar 14 2006
T(2n,n) = C(2n,n)*C(3n,n) = C(n,n)*C(2n,n)*C(3n,n) = A006480(n). - Paul Barry, Mar 14 2006
G.f.: 1/(1-xy-2x/(1-xy-x/(1-xy-x/(1-xy-x/(1-xy-x... (continued fraction). - Paul Barry, Jan 06 2009
T(n,k) = Sum_{j=0..n} C(n,j)^2*C(j,k). - Paul Barry, May 28 2009
T(n,k) = [x^k]F(-n,-n;1;1+x). - Paul Barry, Oct 05 2010
T(n,k) = (n-k+1)*A060693(n,k). - Peter Luschny, May 17 2011
T(n,k) = A054142(n,k)*A000984(n-k). - Philippe Deléham, Nov 19 2011.
T(n,k) = abs(A130595(n,k)*A092392(n,k)). - Reinhard Zumkeller, Dec 20 2013

A007004 a(n) = (3*n)! / ((n+1)*(n!)^3).

Original entry on oeis.org

1, 3, 30, 420, 6930, 126126, 2450448, 49884120, 1051723530, 22787343150, 504636071940, 11377249621920, 260363981732400, 6034149862347600, 141371511060715200, 3343436236585914480, 79726203788589122490, 1914992149823954412750, 46295775130831740013500
Offset: 0

Views

Author

Keywords

Comments

Number of walks with steps (0,1)/North, (1,0)/East and (-1,-1)/Southwest from (0,0) to (0,0) of length 3n, and staying above the line y=x (i.e., any point (x,y) along the walk satisfies y>=x ). - Shanzhen Gao, Nov 09 2010
Number of walks in 3-dimensions using steps (1,0,0), (0,1,0), and (0,0,1) from (0,0,0) to (n,n,n) such that after each step we have y<=x. - Eric Werley, Jun 24 2011
Number of possible necklaces consisting of n white beads, n-1 red beads and n-1 black beads, where two necklaces are considered equivalent if they differ by a cyclic permutation. - Thotsaporn Thanatipanonda, Feb 20 2011

Examples

			n=1, three walks: NE(SW), (SW)NE, N(SW)E. - _Shanzhen Gao_, Nov 09 2010
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n=3 of A215561.

Programs

  • Magma
    [Factorial(3*n) / ((n+1)*Factorial(n)^3): n in [0..30]]; // Vincenzo Librandi, May 26 2011
    
  • Maple
    seq(binomial(2*n,n)*binomial(3*n,n)/(n+1), n=0..20); # Zerinvary Lajos, May 27 2006
  • Mathematica
    a[n_]:=(3*n)!/((n + 1)*(n!)^3); (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
    CoefficientList[Series[Hypergeometric2F1[1/3,2/3,2,27 x],{x,0,20}],x] (* Harvey P. Dale, Apr 07 2013 *)
    Table[Multinomial[n, n, n]/(n + 1), {n, 0, 12}] (* Emanuele Munarini, Oct 25 2016 *)
  • Maxima
    makelist(multinomial_coeff(n,n,n)/(n+1),n,0,24); /* Emanuele Munarini, Oct 25 2016 */

Formula

a(n) = C(2*n,n)*C(3*n,n)/(n+1) = A000108(n)*C(3*n,n). - Zerinvary Lajos, May 27 2006
a(n) = A060693(2n,n) = A088617(2n,n). - Philippe Deléham, Nov 23 2011
a(n) = (3*(3*n-1)*(3*n-2)*a(n-1))/(n*(n+1)) for n>0, a(0)=1. - Alois P. Heinz, Aug 13 2013
a(n) ~ 3^(3*n+1/2)/(2*Pi*n^2). - Vaclav Kotesovec, Sep 06 2016

Extensions

More terms from Zerinvary Lajos, May 27 2006
Showing 1-10 of 25 results. Next