A372215
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of G(x)^n evaluated at x = 1, where G(x) = (1 - 3*x - sqrt(1 - 10*x + 9*x^2))/(2*x) is the g.f. of A082298.
Original entry on oeis.org
1, 5, 65, 1013, 16897, 292005, 5157569, 92456341, 1675300865, 30604622405, 562675808065, 10398428960309, 192983418877441, 3594314403564773, 67146652988725697, 1257656071818605013, 23609209650223284225, 444081728926392461445, 8367715805572617168449
Offset: 0
n-th order Taylor polynomial of G(x)^n:
n = 0: G(x)^0 = 1 + O(x)
n = 1: G(x)^1 = 1 + 4*x + O(x^2)
n = 2: G(x)^2 = 1 + 8*x + 56*x^2 + O(x^3)
n = 3: G(x)^3 = 1 + 12*x + 108*x^2 + 892 *x^3 + O(x^4)
n = 4: G(x)^4 = 1 + 16*x + 176*x^2 + 1680*x^3 + 15024*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 4 = 5, a(2) = 1 + 8 + 56 = 65, a(3) = 1 + 12 + 108 + 892 = 1013 and a(4) = 1 + 16 + 176 + 1680 + 15024 = 16897.
The triangle of coefficients of the n-th order Taylor polynomial of G(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 4 1 5
n = 2 | 56 8 1 65
n = 3 | 892 108 12 1 1013
n = 4 | 15024 1680 176 16 1 16897
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 3594314403564773 - 5 = (2^5)*(3^3)*(13^3)*29*7643*8543 == 0 (mod 13^3).
a(2*7) - a(2) = 67146652988725697 - 65 = (2^7)*3*(7^4)*23*3943*803057 = 0 (mod 7^4).
-
G := x -> (1/2)*(1 - 3*x - sqrt(1 - 10*x + 9*x^2))/x:
H := (x, n) -> series(G(x)^n, x, 21):
seq(add(coeff(H(x, n), x, k), k = 0..n), n = 0..20);
-
Table[SeriesCoefficient[(2*(1 + x)^2/(1 - 2*x + Sqrt[1 - 8*x]))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 02 2024 *)
-
G(x) = (1 - 3*x - sqrt(1 - 10*x + 9*x^2))/(2*x);
a(n) = my(x='x+O('x^(n+2))); subst(Pol(Vec(G(x)^n)), 'x, 1); \\ Michel Marcus, May 07 2024
A090181
Triangle of Narayana (A001263) with 0 <= k <= n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 20, 10, 1, 0, 1, 15, 50, 50, 15, 1, 0, 1, 21, 105, 175, 105, 21, 1, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 0, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 0, 1, 55, 825, 4950, 13860
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 1, 3, 1;
[4] 0, 1, 6, 6, 1;
[5] 0, 1, 10, 20, 10, 1;
[6] 0, 1, 15, 50, 50, 15, 1;
[7] 0, 1, 21, 105, 175, 105, 21, 1;
[8] 0, 1, 28, 196, 490, 490, 196, 28, 1;
[9] 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
- Indranil Ghosh, Rows 0..100, flattened
- Yu Hin Au, Some Properties and Combinatorial Implications of Weighted Small Schröder Numbers, arXiv:1912.00555 [math.CO], 2019.
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009) 09.7.6.
- Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv preprint arXiv:1107.5490 [math.CO], 2011.
- Paul Barry, On a Generalization of the Narayana Triangle, J. Int. Seq. 14 (2011) # 11.4.5.
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See pp. 25, 29.
- Paul Barry and Aoife Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
- FindStat - Combinatorial Statistic Finder, The number of peaks of a Dyck path, The number of double rises of a Dyck path, The number of valleys of a Dyck path, The number of left oriented leafs except the first one of a binary tree, The number of left tunnels of a Dyck path
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
Sum_{k=0..n} T(n,k)*x^k =
A000007(n),
A000108(n),
A006318(n),
A047891(n+1),
A082298(n),
A082301(n),
A082302(n),
A082305(n),
A082366(n),
A082367(n) for x=0,1,2,3,4,5,6,7,8,9. -
Philippe Deléham, Aug 10 2006
Sum_{k=0..n} x^(n-k)*T(n,k) =
A090192(n+1),
A000012(n),
A000108(n),
A001003(n),
A007564(n),
A059231(n),
A078009(n),
A078018(n),
A081178(n),
A082147(n),
A082181(n),
A082148(n),
A082173(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. -
Philippe Deléham, Oct 21 2006
Sum_{k=0..n} T(n,k)*x^k*(x-1)^(n-k) =
A000012(n),
A006318(n),
A103210(n),
A103211(n),
A133305(n),
A133306(n),
A133307(n),
A133308(n),
A133309(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. -
Philippe Deléham, Oct 20 2007
-
[[(&+[(-1)^(j-k)*Binomial(2*n-j,j)*Binomial(j,k)*Binomial(2*n-2*j,n-j)/(n-j+1): j in [0..n]]): k in [0..n]]: n in [0..10]];
-
A090181 := (n,k) -> binomial(n,n-k)*binomial(n-1,n-k)/(n-k+1):
seq(print( seq(A090181(n,k),k=0..n)),n=0..5); # Peter Luschny, May 10 2014
egf := 1+int((sqrt(t)*exp((1+t)*x)*BesselI(1,2*sqrt(t)*x))/x,x);
s := n -> n!*coeff(series(egf,x,n+2),x,n);
seq(print(seq(coeff(s(n),t,j),j=0..n)),n=0..9); # Peter Luschny, Oct 30 2014
T := proc(n, k) option remember; if k = n or k = 1 then 1 elif k < 1 then 0 else (2*n/k - 1) * T(n-1, k-1) + T(n-1, k) fi end:
for n from 0 to 8 do seq(T(n, k), k = 0..n) od; # Peter Luschny, Dec 31 2024
-
Flatten[Table[Sum[(-1)^(j-k) * Binomial[2n-j,j] * Binomial[j,k] * CatalanNumber[n-j], {j, 0, n}], {n,0,11},{k,0,n}]] (* Indranil Ghosh, Mar 05 2017 *)
p[0, ] := 1; p[1, x] := x; p[n_, x_] := ((2 n - 1) (1 + x) p[n - 1, x] - (n - 2) (x - 1)^2 p[n - 2, x]) / (n + 1);
Table[CoefficientList[p[n, x], x], {n, 0, 9}] // TableForm (* Peter Luschny, Apr 26 2022 *)
-
c(n) = binomial(2*n,n)/ (n+1);
tabl(nn) = {for(n=0, nn, for(k=0, n, print1(sum(j=0, n, (-1)^(j-k) * binomial(2*n-j,j) * binomial(j,k) * c(n-j)),", ");); print(););};
tabl(11); \\ Indranil Ghosh, Mar 05 2017
-
from functools import cache
@cache
def Trow(n):
if n == 0: return [1]
if n == 1: return [0, 1]
if n == 2: return [0, 1, 1]
A = Trow(n - 2) + [0, 0]
B = Trow(n - 1) + [1]
for k in range(n - 1, 1, -1):
B[k] = (((B[k] + B[k - 1]) * (2 * n - 1)
- (A[k] - 2 * A[k - 1] + A[k - 2]) * (n - 2)) // (n + 1))
return B
for n in range(10): print(Trow(n)) # Peter Luschny, May 02 2022
-
def A090181_row(n):
U = [0]*(n+1)
for d in DyckWords(n):
U[d.number_of_peaks()] +=1
return U
for n in range(8): A090181_row(n) # Peter Luschny, May 10 2014
A060693
Triangle (0 <= k <= n) read by rows: T(n, k) is the number of Schröder paths from (0,0) to (2n,0) having k peaks.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 10, 6, 1, 14, 35, 30, 10, 1, 42, 126, 140, 70, 15, 1, 132, 462, 630, 420, 140, 21, 1, 429, 1716, 2772, 2310, 1050, 252, 28, 1, 1430, 6435, 12012, 12012, 6930, 2310, 420, 36, 1, 4862, 24310, 51480, 60060, 42042, 18018, 4620, 660, 45, 1, 16796
Offset: 0
Triangle begins:
00: [ 1]
01: [ 1, 1]
02: [ 2, 3, 1]
03: [ 5, 10, 6, 1]
04: [ 14, 35, 30, 10, 1]
05: [ 42, 126, 140, 70, 15, 1]
06: [ 132, 462, 630, 420, 140, 21, 1]
07: [ 429, 1716, 2772, 2310, 1050, 252, 28, 1]
08: [ 1430, 6435, 12012, 12012, 6930, 2310, 420, 36, 1]
09: [ 4862, 24310, 51480, 60060, 42042, 18018, 4620, 660, 45, 1]
10: [16796, 92378, 218790, 291720, 240240, 126126, 42042, 8580, 990, 55, 1]
...
- Vincenzo Librandi, Rows n = 0..100, flattened
- J. Agapito, A. Mestre, P. Petrullo, and M. Torres, Counting noncrossing partitions via Catalan triangles, CEAFEL Seminar, June 30, 2015.
- Jean-Christophe Aval and François Bergeron, Rectangular Schröder Parking Functions Combinatorics, arXiv:1603.09487 [math.CO], 2016.
- Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, J. Integer Sequ., Vol. 9 (2006), Article 06.2.4.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
- Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- Paul Barry, On the inversion of Riordan arrays, arXiv:2101.06713 [math.CO], 2021.
- Paul Barry, On Motzkin-Schröder Paths, Riordan Arrays, and Somos-4 Sequences, J. Int. Seq. (2023) Vol. 26, Art. 23.4.7.
- Paul Barry, Notes on Riordan arrays and lattice paths, arXiv:2504.09719 [math.CO], 2025. See p. 25.
- David Callan and Toufik Mansour, Five subsets of permutations enumerated as weak sorting permutations, arXiv:1602.05182 [math.CO], 2016.
- G. E. Cossali, A Common Generating Function of Catalan Numbers and Other Integer Sequences, J. Int. Seqs. 6 (2003).
- Dan Drake, Bijections from Weighted Dyck Paths to Schröder Paths, J. Int. Seq. 13 (2010) # 10.9.2
- Samuele Giraudo, Tree series and pattern avoidance in syntax trees, arXiv:1903.00677 [math.CO], 2019.
- Nate Kube and Frank Ruskey, Sequences That Satisfy a(n-a(n))=0, Journal of Integer Sequences, Vol. 8 (2005), Article 05.5.5.
- Krishna Menon and Anurag Singh, Grassmannian permutations avoiding identity, arXiv:2212.13794 [math.CO], 2022.
- Jean-Christophe Novelli and Jean-Yves Thibon, Duplicial algebras and Lagrange inversion, arXiv preprint arXiv:1209.5959 [math.CO], 2012.
-
A060693 := (n,k) -> binomial(n,k)*binomial(2*n-k,n)/(n-k+1); # Peter Luschny, May 17 2011
-
t[n_, k_] := Binomial[n, k]*Binomial[2 n - k, n]/(n - k + 1); Flatten[Table[t[n, k], {n, 0, 9}, {k, 0, n}]] (* Robert G. Wilson v, May 30 2011 *)
-
T(n, k) = binomial(n, k)*binomial(2*n - k, n)/(n - k + 1);
for(n=0, 10, for(k=0, n, print1(T(n, k),", ")); print); \\ Indranil Ghosh, Jul 28 2017
-
from sympy import binomial
def T(n, k): return binomial(n, k) * binomial(2 * n - k, n) / (n - k + 1)
for n in range(11): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Jul 28 2017
A162326
Let a(0) = a(1) = 1, and n*a(n) = 2*(-7+5*n)*a(n-1) + 9*(2-n)*a(n-2) for n >= 2.
Original entry on oeis.org
1, 1, 3, 13, 71, 441, 2955, 20805, 151695, 1135345, 8671763, 67320573, 529626839, 4213228969, 33833367963, 273892683573, 2232832964895, 18314495896545, 151037687326755, 1251606057754605, 10416531069771111, 87029307323766681
Offset: 0
Write [0...n]y for [x0,...,xn]y and [0...s,0...t]g for [x0,...,xs;y0,...,yt]g.
For n = 1 one finds 1 term, [01]y = -[01;1]g/[0;01]g.
For n = 2 one finds 3 terms, [012]y = -[012;2]g/[0;02]g + ([01;12]g[12;2]g)/([0;02]g[1;12]g) - ([0;012]g[01;1]g[12;2]g)/([0;02]g[0;01]g[1;12]g).
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Georg Muntingh, Implicit Divided Differences, Little Schroeder Numbers, and Catalan Numbers, J. Integ. Seqs., Vol. 15 (2012), Article 12.6.5.
- Paveł Szabłowski, Beta distributions whose moment sequences are related to integer sequences listed in the OEIS, Contrib. Disc. Math. (2024) Vol. 19, No. 4, 85-109. See p. 98.
Cf.
A172003, which is a generalization to bivariate implicit functions.
Cf.
A003262, which is the analogous sequence for implicit derivatives, and
A172004 for its generalization to bivariate implicit functions.
-
m:=20; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (5-Sqrt((1-9*x)/(1-x)))/4 )); // G. C. Greubel, Feb 07 2019
-
a:=[1,3]; for n in [3..21] do Append(~a,(2*(-7+5*n)*a[n-1] + 9*(2-n)*a[n-2]) div n); end for ; [1] cat a; // Marius A. Burtea, Jan 20 2020
-
CoefficientList[Series[(5-Sqrt[(1-9*x)/(1-x)])/4, {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)
-
a(n):=if n=0 then 1 else sum(binomial(n,k)*2^(n-k-1)*binomial(2*n-2*k-2,n-k-1),k,0,n)/n; /* Vladimir Kruchinin, Mar 13 2016 */
-
a(n) = if(n<2, 1, (2*(-7+5*n)*a(n-1) + 9*(2-n)*a(n-2))/n);
vector(25, n, a(n-1)) \\ Altug Alkan, Oct 06 2015
-
my(x='x+O('x^20)); Vec((5-sqrt((1-9*x)/(1-x)))/4) \\ G. C. Greubel, Feb 07 2019
-
L = [1, 1]
for n in range(2,22):
L.append( ((-14 + 10*n)*L[-1] + (18-9*n)*L[-2])//n )
print(L)
# Georg Muntingh, Jul 19 2012
-
((5-sqrt((1-9*x)/(1-x)))/4).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Feb 07 2019
A131198
Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,0,1,0,1,0,1,0,...] DELTA [0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 20, 10, 1, 0, 1, 15, 50, 50, 15, 1, 0, 1, 21, 105, 175, 105, 21, 1, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 0, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 3, 1, 0;
1, 6, 6, 1, 0;
1, 10, 20, 10, 1, 0;
1, 15, 50, 50, 15, 1, 0;
1, 21, 105, 175, 105, 21, 1, 0;
1, 28, 196, 490, 490, 196, 28, 1, 0; ...
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009), Article 09.7.6.
- Paul Barry, On a Generalization of the Narayana Triangle, J. Int. Seq. 14 (2011), Article 11.4.5.
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
- FindStat - Combinatorial Statistic Finder, The number of peaks of a Dyck path., The number of double rises of a Dyck path., The number of valleys of a Dyck path., The number of left oriented leafs except the first one of a binary tree., The number of left tunnels of a Dyck path.
- Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
-
[[n le 0 select 1 else (n-k)*Binomial(n,k)^2/(n*(k+1)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 06 2018
-
T := (n,k) -> `if`(n=0, 0^n, binomial(n,k)^2*(n-k)/(n*(k+1)));
seq(print(seq(T(n,k), k=0..n)), n=0..5); # Peter Luschny, Jun 08 2014
R := n -> simplify(hypergeom([1 - n, -n], [2], x)):
Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
-
Table[If[n == 0, 1, (n-k)*Binomial[n,k]^2/(n*(k+1))], {n,0,10}, {k,0,n}] //Flatten (* G. C. Greubel, Feb 06 2018 *)
-
for(n=0,10, for(k=0,n, print1(if(n==0,1, (n-k)*binomial(n,k)^2/(n* (k+1))), ", "))) \\ G. C. Greubel, Feb 06 2018
A172455
The case S(6,-4,-1) of the family of self-convolutive recurrences studied by Martin and Kearney.
Original entry on oeis.org
1, 7, 84, 1463, 33936, 990542, 34938624, 1445713003, 68639375616, 3676366634402, 219208706540544, 14397191399702118, 1032543050697424896, 80280469685284582812, 6725557192852592984064, 603931579625379293509683
Offset: 1
G.f. = x + 7*x^2 + 84*x^3 + 1463*x^4 + 33936*x^5 + 990542*x^6 + 34938624*x^7 + ...
a(2) = 7 since (6*2 - 4) * a(2-1) - (a(1) * a(2-1)) = 7.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 307.
- R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, arXiv:1103.4936 [math.CO], 2011.
- NIST Digital Library of Mathematical Functions, Airy Functions.
- A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
- Eric Weisstein's World of Mathematics, Airy Functions, contains the definitions of Ai(x), Bi(x).
Cf.
A000079 S(1,1,-1),
A000108 S(0,0,1),
A000142 S(1,-1,0),
A000244 S(2,1,-2),
A000351 S(4,1,-4),
A000400 S(5,1,-5),
A000420 S(6,1,-6),
A000698 S(2,-3,1),
A001710 S(1,1,0),
A001715 S(1,2,0),
A001720 S(1,3,0),
A001725 S(1,4,0),
A001730 S(1,5,0),
A003319 S(1,-2,1),
A005411 S(2,-4,1),
A005412 S(2,-2,1),
A006012 S(-1,2,2),
A006318 S(0,1,1),
A047891 S(0,2,1),
A049388 S(1,6,0),
A051604 S(3,1,0),
A051605 S(3,2,0),
A051606 S(3,3,0),
A051607 S(3,4,0),
A051608 S(3,5,0),
A051609 S(3,6,0),
A051617 S(4,1,0),
A051618 S(4,2,0),
A051619 S(4,3,0),
A051620 S(4,4,0),
A051621 S(4,5,0),
A051622 S(4,6,0),
A051687 S(5,1,0),
A051688 S(5,2,0),
A051689 S(5,3,0),
A051690 S(5,4,0),
A051691 S(5,5,0),
A053100 S(6,1,0),
A053101 S(6,2,0),
A053102 S(6,3,0),
A053103 S(6,4,0),
A053104 S(7,1,0),
A053105 S(7,2,0),
A053106 S(7,3,0),
A062980 S(6,-8,1),
A082298 S(0,3,1),
A082301 S(0,4,1),
A082302 S(0,5,1),
A082305 S(0,6,1),
A082366 S(0,7,1),
A082367 S(0,8,1),
A105523 S(0,-2,1),
A107716 S(3,-4,1),
A111529 S(1,-3,2),
A111530 S(1,-4,3),
A111531 S(1,-5,4),
A111532 S(1,-6,5),
A111533 S(1,-7,6),
A111546 S(1,0,1),
A111556 S(1,1,1),
A143749 S(0,10,1),
A146559 S(1,1,-2),
A167872 S(2,-3,2),
A172450 S(2,0,-1),
A172485 S(-1,-2,3),
A177354 S(1,2,1),
A292186 S(4,-6,1),
A292187 S(3, -5, 1).
-
a[1] = 1; a[n_]:= a[n] = (6*n-4)*a[n-1] - Sum[a[k]*a[n-k], {k, 1, n-1}]; Table[a[n], {n, 1, 20}] (* Vaclav Kotesovec, Jan 19 2015 *)
-
{a(n) = local(A); if( n<1, 0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (6 * k - 4) * A[k-1] - sum( j=1, k-1, A[j] * A[k-j])); A[n])} /* Michael Somos, Jul 24 2011 */
-
S(v1, v2, v3, N=16) = {
my(a = vector(N)); a[1] = 1;
for (n = 2, N, a[n] = (v1*n+v2)*a[n-1] + v3*sum(j=1,n-1,a[j]*a[n-j])); a;
};
S(6,-4,-1)
\\ test: y = x*Ser(S(6,-4,-1,201)); 6*x^2*y' == y^2 - (2*x-1)*y - x
\\ Gheorghe Coserea, May 12 2017
A352687
Triangle read by rows, a Narayana related triangle whose rows are refinements of twice the Catalan numbers (for n >= 2).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 7, 12, 7, 1, 0, 1, 11, 30, 30, 11, 1, 0, 1, 16, 65, 100, 65, 16, 1, 0, 1, 22, 126, 280, 280, 126, 22, 1, 0, 1, 29, 224, 686, 980, 686, 224, 29, 1, 0, 1, 37, 372, 1512, 2940, 2940, 1512, 372, 37, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 1, 2, 1;
[4] 0, 1, 4, 4, 1;
[5] 0, 1, 7, 12, 7, 1;
[6] 0, 1, 11, 30, 30, 11, 1;
[7] 0, 1, 16, 65, 100, 65, 16, 1;
[8] 0, 1, 22, 126, 280, 280, 126, 22, 1;
[9] 0, 1, 29, 224, 686, 980, 686, 224, 29, 1;
- Xi Chen, Arthur Li Bo Yang, James Jing Yu Zhao, Recurrences for Callan's Generalization of Narayana Polynomials, J. Syst. Sci. Complex (2021).
- Peter Luschny, Illustration of the polynomials.
- Robert A. Sulanke, The Narayana distribution, J. Statist. Plann. Inference, 2002, 101: 311-326, formula 2.
-
T := (n, k) -> if n = k then 1 elif k = 0 then 0 else
binomial(n, k)^2*(k*(2*k^2 + (n + 1)*(n - 2*k))) / (n^2*(n - 1)*(n - k + 1)) fi:
seq(seq(T(n, k), k = 0..n), n = 0..10);
# Alternative:
gf := 1 - x + (1 + y)*(1 - x*(y - 1) - sqrt((x*y + x - 1)^2 - 4*x^2*y))/2:
serx := expand(series(gf, x, 16)): coeffy := n -> coeff(serx, x, n):
seq(seq(coeff(coeffy(n), y, k), k = 0..n), n = 0..10);
# Using polynomial recurrence:
P := proc(n, x) option remember; if n < 3 then [1, x, x + x^2] [n + 1] else
((2*n - 3)*(x + 1)*P(n - 1, x) - (n - 3)*(x - 1)^2*P(n - 2, x)) / n fi end:
Trow := n -> seq(coeff(P(n, x), x, k), k = 0..n): seq(Trow(n), n = 0..10);
# Represented by generalized Narayana polynomials:
N := (n, k, x) -> add(((k+1)/(n-k))*binomial(n-k,j-1)*binomial(n-k,j+k)*x^(j+k), j=0..n-2*k): seq(print(ifelse(n=0, 1, expand(N(n,0,x) - N(n,1,x)))), n=0..7);
-
H[0, ] := 1; H[1, x] := x;
H[n_, x_] := x*(x + 1)*Hypergeometric2F1[1 - n, 2 - n, 2, x];
Hrow[n_] := CoefficientList[H[n, x], x]; Table[Hrow[n], {n, 0, 9}] // TableForm
-
from math import comb as binomial
def T(n, k):
if k == n: return 1
if k == 0: return 0
return ((binomial(n, k)**2 * (k * (2 * k**2 + (n + 1) * (n - 2 * k))))
// (n**2 * (n - 1) * (n - k + 1)))
def Trow(n): return [T(n, k) for k in range(n + 1)]
for n in range(10): print(Trow(n))
-
# The recursion with cache is (much) faster:
from functools import cache
@cache
def T_row(n):
if n < 3: return ([1], [0, 1], [0, 1, 1])[n]
A = T_row(n - 2) + [0, 0]
B = T_row(n - 1) + [1]
for k in range(n - 1, 1, -1):
B[k] = (((B[k] + B[k - 1]) * (2 * n - 3)
- (A[k] - 2 * A[k - 1] + A[k - 2]) * (n - 3)) // n)
return B
for n in range(10): print(T_row(n))
A379103
Expansion of (1-3*x-sqrt(9*x^2-14*x+1))/4.
Original entry on oeis.org
0, 1, 5, 35, 295, 2765, 27705, 290535, 3148995, 34995065, 396602605, 4566227435, 53259218495, 627982592965, 7473163652705, 89640387354735, 1082664905352795, 13155505626756465, 160709002086562005, 1972595405313408435, 24315686632846439895, 300886761671728853565, 3736205372071338170505, 46540791299676591116535
Offset: 0
G.f. = x + 5*x^2 + 35*x^3 + 295*x^4 + 2765*x^5 + 27705*x^6 + ... - _Michael Somos_, Apr 26 2025
-
a = 3;b = 2;c(1) = 1;last_val = 16;for j = 2:last_val
c(j) = a*c(j-1) + b*sum(c(1:j-1).*fliplr(c(1:j-1)));
end
-
a[ n_] := SeriesCoefficient[ (1 - 3*x - Sqrt[1 - 14*x + 9*x^2])/4, {x, 0, n}]; (* Michael Somos, Apr 26 2025 *)
a[ n_] := With[{X = 5, Y = 2}, SeriesCoefficient[ Nest[x/(1 - (X-Y)*x - Y*#)&, O[x], n], {x, 0, n}]]; (* Michael Somos, Apr 28 2025 *)
a[ n_] := With[{X = 5, Y = 2}, SeriesCoefficient[ Nest[x/(1 - X*x/(1 - Y*#))&, O[x], Ceiling[n/2]], {x, 0, n}]]; (* Michael Somos, Apr 28 2025 *)
-
my(x='x+O('x^33)); concat([0],Vec((1-3*x-sqrt(9*x^2-14*x+1))/4)) \\ Joerg Arndt, Dec 15 2024
-
a(n) = my(A = O(x)); for(k=1, n, A = x + 3*x*A + 2*A^2); polcoeff(A, n); /* Michael Somos, Apr 26 2025 */
-
a(n) = my(A = O(x), X = 5, Y = 2); for(k = 1, n, A = x/(1 - (X-Y)*x - Y*A)); polcoeff(A, n); /* Michael Somos, Apr 28 2025 */
-
a(n) = my(A = O(x), X = 5, Y = 2); for(k = 1, (n+1)\2, A = x/(1 - X*x/(1 - Y*A))); polcoeff(A, n); /* Michael Somos, Apr 28 2025 */
A247507
Square array read by ascending antidiagonals, n>=0, k>=0. Row n is the expansion of (1-n*x-sqrt(n^2*x^2-2*n*x-4*x+1))/(2*x).
Original entry on oeis.org
1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 22, 14, 1, 5, 20, 57, 90, 42, 1, 6, 30, 116, 300, 394, 132, 1, 7, 42, 205, 740, 1686, 1806, 429, 1, 8, 56, 330, 1530, 5028, 9912, 8558, 1430, 1, 9, 72, 497, 2814, 12130, 35700, 60213, 41586, 4862
Offset: 0
[0][1] [2] [3] [4] [5] [6] [7]
[0] 1, 1, 2, 5, 14, 42, 132, 429,.. A000108
[1] 1, 2, 6, 22, 90, 394, 1806, 8558,.. A006318
[2] 1, 3, 12, 57, 300, 1686, 9912, 60213,.. A047891
[3] 1, 4, 20, 116, 740, 5028, 35700, 261780,.. A082298
[4] 1, 5, 30, 205, 1530, 12130, 100380, 857405,.. A082301
[5] 1, 6, 42, 330, 2814, 25422, 239442, 2326434,.. A082302
[6] 1, 7, 56, 497, 4760, 48174, 507696, 5516133,.. A082305
[7] 1, 8, 72, 712, 7560, 84616, 985032, 11814728,.. A082366
[8] 1, 9, 90, 981, 11430, 140058, 1782900, 23369805,.. A082367
-
gf := n -> (1-n*x-sqrt(n^2*x^2-2*n*x-4*x+1))/(2*x):
for n from 0 to 10 do lprint(PolynomialTools:-CoefficientList( convert(series(gf(n),x,8),polynom),x)) od;
A341359
Square array T(m,n) read by antidiagonals, satisfying shifted Catalan recurrences: T(m,0) = 1 and T(m,n) = Sum_{k=0..n-1} T(m,k) * T(m,(n-1-k+m) mod n) for all n > 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 1, 2, 5, 14, 1, 1, 2, 6, 15, 42, 1, 1, 2, 5, 26, 51, 132, 1, 1, 2, 5, 30, 142, 188, 429, 1, 1, 2, 6, 14, 305, 882, 731, 1430, 1, 1, 2, 5, 17, 210, 3955, 5910, 2950, 4862, 1, 1, 2, 5, 22, 50, 5894, 57855, 41610, 12235, 16796, 1, 1, 2, 6, 30, 65, 2550, 209146, 908880, 303390, 51822, 58786
Offset: 0
Rows of the array:
m=0: 1, 1, 2, 5, 14, 42, 132, 429, 1430, ...
m=1: 1, 1, 2, 5, 15, 51, 188, 731, 2950, ...
m=2: 1, 1, 2, 6, 26, 142, 882, 5910, 41610, ...
m=3: 1, 1, 2, 5, 30, 305, 3955, 57855, 908880, ...
m=4: 1, 1, 2, 5, 14, 210, 5894, 209146, 8331582, ...
m=5: 1, 1, 2, 6, 17, 50, 2550, 255050, 32007550, ...
...
-
T[m_, 0] := 1; T[m_, n_] := T[m, n] = Sum[T[m, k] * T[m, Mod[n - 1 - k + m, n]], {k, 0, n - 1}]; Table[T[m - n, n], {m, 0, 11}, {n, 0, m}] // Flatten (* Amiram Eldar, Feb 09 2021 *)
Showing 1-10 of 13 results.
Comments