cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A373431 Triangle read by rows: Coefficients of the polynomials N(n, x) * EZ(n, x), where N denote the Narayana polynomials A131198 and EZ the Eulerian zig-zag polynomials A205497.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 4, 1, 1, 9, 25, 25, 9, 1, 1, 17, 97, 221, 221, 97, 17, 1, 1, 29, 291, 1229, 2476, 2476, 1229, 291, 29, 1, 1, 47, 760, 5303, 18415, 33818, 33818, 18415, 5303, 760, 47, 1, 1, 74, 1818, 19481, 106272, 317902, 544727, 544727, 317902, 106272, 19481, 1818, 74, 1
Offset: 0

Views

Author

Peter Luschny, Jun 05 2024

Keywords

Comments

There are various conventions for indexing the Narayana, the Eulerian numbers and the zig-zag Eulerian numbers. The one we use here requires that all corresponding polynomials have p(n, 0) = 1.

Examples

			Triangle starts:
  [0] 1;
  [1] 1;
  [2] 1,  1;
  [3] 1,  4,   4,    1;
  [4] 1,  9,  25,   25,    9,    1;
  [5] 1, 17,  97,  221,  221,   97,   17,   1;
  [6] 1, 29, 291, 1229, 2476, 2476, 1229, 291, 29, 1;
		

Crossrefs

Cf. A131198 (Narayana), A205497 (Eulerian zig-zag), A373430 (row sums).

Programs

  • Maple
    R := proc(n) option remember; local F; if n = 0 then 1/(1 - q*x) else F := R(n-1);
    simplify(p/(p - q)*(subs({p = q, q = p}, F) - subs(p = q, F))) fi end:
    EZ := (n, x) -> ifelse(n < 3, 1, expand(simplify(subs({p = 1, q = 1}, R(n))*(1 - x)^(n + 1)) / x^2)):
    nc := (n, k) -> `if`(n = 0, 0^n, binomial(n, k)^2*(n-k)/(n*(k+1))):
    N := (n, x) -> local k; simplify(add(nc(n, k)*x^k, k = 0..n)):
    NEZ := (n, x) -> expand(EZ(n, x) * N(n, x)):
    Trow := n -> local k; if n < 2 then 1 elif n = 2 then 1, 1
    else seq(coeff(NEZ(n, x), x, k), k = 0..2*n-3) fi: seq(print(Trow(n)), n = 0..6);

A001263 Triangle of Narayana numbers T(n,k) = C(n-1,k-1)*C(n,k-1)/k with 1 <= k <= n, read by rows. Also called the Catalan triangle.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 20, 10, 1, 1, 15, 50, 50, 15, 1, 1, 21, 105, 175, 105, 21, 1, 1, 28, 196, 490, 490, 196, 28, 1, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 1, 55, 825, 4950, 13860, 19404, 13860, 4950, 825
Offset: 1

Views

Author

Keywords

Comments

Number of antichains (or order ideals) in the poset 2*(k-1)*(n-k) or plane partitions with rows <= k-1, columns <= n-k and entries <= 2. - Mitch Harris, Jul 15 2000
T(n,k) is the number of Dyck n-paths with exactly k peaks. a(n,k) = number of pairs (P,Q) of lattice paths from (0,0) to (k,n+1-k), each consisting of unit steps East or North, such that P lies strictly above Q except at the endpoints. - David Callan, Mar 23 2004
Number of permutations of [n] which avoid-132 and have k-1 descents. - Mike Zabrocki, Aug 26 2004
T(n,k) is the number of paths through n panes of glass, entering and leaving from one side, of length 2n with k reflections (where traversing one pane of glass is the unit length). - Mitch Harris, Jul 06 2006
Antidiagonal sums given by A004148 (without first term).
T(n,k) is the number of full binary trees with n internal nodes and k-1 jumps. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump. - Emeric Deutsch, Jan 18 2007
From Gary W. Adamson, Oct 22 2007: (Start)
The n-th row can be generated by the following operation using an ascending row of (n-1) triangular terms, (A) and a descending row, (B); e.g., row 6:
A: 1....3....6....10....15
B: 15...10....6.....3.....1
C: 1...15...50....50....15....1 = row 6.
Leftmost column of A,B -> first two terms of C; then followed by the operation B*C/A of current column = next term of row C, (e.g., 10*15/3 = 50). Continuing with the operation, we get row 6: (1, 15, 50, 50, 15, 1). (End)
The previous comment can be upgraded to: The ConvOffsStoT transform of the triangular series; and by rows, row 6 is the ConvOffs transform of (1, 3, 6, 10, 15). Refer to triangle A117401 as another example of the ConvOffsStoT transform, and OEIS under Maple Transforms. - Gary W. Adamson, Jul 09 2012
For a connection to Lagrange inversion, see A134264. - Tom Copeland, Aug 15 2008
T(n,k) is also the number of order-decreasing and order-preserving mappings (of an n-element set) of height k (height of a mapping is the cardinal of its image set). - Abdullahi Umar, Aug 21 2008
Row n of this triangle is the h-vector of the simplicial complex dual to an associahedron of type A_n [Fomin & Reading, p.60]. See A033282 for the corresponding array of f-vectors for associahedra of type A_n. See A008459 and A145903 for the h-vectors for associahedra of type B and type D respectively. The Hilbert transform of this triangle (see A145905 for the definition of this transform) is A145904. - Peter Bala, Oct 27 2008
T(n,k) is also the number of noncrossing set partitions of [n] into k blocks. Given a partition P of the set {1,2,...,n}, a crossing in P are four integers [a, b, c, d] with 1 <= a < b < c < d <= n for which a, c are together in a block, and b, d are together in a different block. A noncrossing partition is a partition with no crossings. - Peter Luschny, Apr 29 2011
Noncrossing set partitions are also called genus 0 partitions. In terms of genus-dependent Stirling numbers of the second kind S2(n,k,g) that count partitions of genus g of an n-set into k nonempty subsets, one has T(n,k) = S2(n,k,0). - Robert Coquereaux, Feb 15 2024
Diagonals of A089732 are rows of A001263. - Tom Copeland, May 14 2012
From Peter Bala, Aug 07 2013: (Start)
Let E(y) = Sum_{n >= 0} y^n/(n!*(n+1)!) = 1/sqrt(y)*BesselI(1,2*sqrt(y)). Then this triangle is the generalized Riordan array (E(y), y) with respect to the sequence n!*(n+1)! as defined in Wang and Wang.
Generating function E(y)*E(x*y) = 1 + (1 + x)*y/(1!*2!) + (1 + 3*x + x^2)*y^2/(2!*3!) + (1 + 6*x + 6*x^2 + x^3)*y^3/(3!*4!) + .... Cf. A105278 with a generating function exp(y)*E(x*y).
The n-th power of this array has a generating function E(y)^n*E(x*y). In particular, the matrix inverse A103364 has a generating function E(x*y)/E(y). (End)
T(n,k) is the number of nonintersecting n arches above the x axis, starting and ending on vertices 1 to 2n, with k being the number of arches starting on an odd vertice and ending on a higher even vertice. Example: T(3,2)=3 [16,25,34] [14,23,56] [12,36,45]. - Roger Ford, Jun 14 2014
Fomin and Reading on p. 31 state that the rows of the Narayana matrix are the h-vectors of the associahedra as well as its dual. - Tom Copeland, Jun 27 2017
The row polynomials P(n, x) = Sum_{k=1..n} T(n, k)*x^(k-1), together with P(0, x) = 1, multiplied by (n+1) are the numerator polynomials of the o.g.f.s of the diagonal sequences of the triangle A103371: G(n, x) = (n+1)*P(n, x)/(1 - x)^{2*n+1}, for n >= 0. This is proved with Lagrange's theorem applied to the Riordan triangle A135278 = (1/(1 - x)^2, x/(1 - x)). See an example below. - Wolfdieter Lang, Jul 31 2017
T(n,k) is the number of Dyck paths of semilength n with k-1 uu-blocks (pairs of consecutive up-steps). - Alexander Burstein, Jun 22 2020
In case you were searching for Narayama numbers, the correct spelling is Narayana. - N. J. A. Sloane, Nov 11 2020
Named after the Canadian mathematician Tadepalli Venkata Narayana (1930-1987). They were also called "Runyon numbers" after John P. Runyon (1922-2013) of Bell Telephone Laboratories, who used them in a study of a telephone traffic system. - Amiram Eldar, Apr 15 2021 The Narayana numbers were first studied by Percy Alexander MacMahon (see reference, Article 495) as pointed out by Bóna and Sagan (see link). - Peter Luschny, Apr 28 2022
From Andrea Arlette España, Nov 14 2022: (Start)
T(n,k) is the degree distribution of the paths towards synchronization in the transition diagram associated with the Laplacian system over the complete graph K_n, corresponding to ordered initial conditions x_1 < x_2 < ... < x_n.
T(n,k) for n=2N+1 and k=N+1 is the number of states in the transition diagram associated with the Laplacian system over the complete bipartite graph K_{N,N}, corresponding to ordered (x_1 < x_2 < ... < x_N and x_{N+1} < x_{N+2} < ... < x_{2N}) and balanced (Sum_{i=1..N} x_i/N = Sum_{i=N+1..2N} x_i/N) initial conditions. (End)
From Gus Wiseman, Jan 23 2023: (Start)
Also the number of unlabeled ordered rooted trees with n nodes and k leaves. See the link by Marko Riedel. For example, row n = 5 counts the following trees:
((((o)))) (((o))o) ((o)oo) (oooo)
(((o)o)) ((oo)o)
(((oo))) ((ooo))
((o)(o)) (o(o)o)
((o(o))) (o(oo))
(o((o))) (oo(o))
The unordered version is A055277. Leaves in standard ordered trees are counted by A358371. (End)

Examples

			The initial rows of the triangle are:
  [1] 1
  [2] 1,  1
  [3] 1,  3,   1
  [4] 1,  6,   6,    1
  [5] 1, 10,  20,   10,    1
  [6] 1, 15,  50,   50,   15,    1
  [7] 1, 21, 105,  175,  105,   21,   1
  [8] 1, 28, 196,  490,  490,  196,  28,  1
  [9] 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
  ...
For all n, 12...n (1 block) and 1|2|3|...|n (n blocks) are noncrossing set partitions.
Example of umbral representation:
  A007318(5,k)=[1,5/1,5*4/(2*1),...,1]=(1,5,10,10,5,1),
  so A001263(5,k)={1,b(5)/b(1),b(5)*b(4)/[b(2)*b(1)],...,1}
  = [1,30/2,30*20/(6*2),...,1]=(1,15,50,50,15,1).
  First = last term = b.(5!)/[b.(0!)*b.(5!)]= 1. - _Tom Copeland_, Sep 21 2011
Row polynomials and diagonal sequences of A103371: n = 4,  P(4, x) = 1 + 6*x + 6*x^2 + x^3, and the o.g.f. of fifth diagonal is G(4, x) = 5* P(4, x)/(1 - x)^9, namely [5, 75, 525, ...]. See a comment above. - _Wolfdieter Lang_, Jul 31 2017
		

References

  • Berman and Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), pp. 103-124.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 196.
  • P. A. MacMahon, Combinatory Analysis, Vols. 1 and 2, Cambridge University Press, 1915, 1916; reprinted by Chelsea, 1960, Sect. 495.
  • T. V. Narayana, Lattice Path Combinatorics with Statistical Applications. Univ. Toronto Press, 1979, pp. 100-101.
  • A. Nkwanta, Lattice paths and RNA secondary structures, in African Americans in Mathematics, ed. N. Dean, Amer. Math. Soc., 1997, pp. 137-147.
  • T. K. Petersen, Eulerian Numbers, Birkhäuser, 2015, Chapter 2.
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 17.
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 6.36(a) and (b).

Crossrefs

Other versions are in A090181 and A131198. - Philippe Deléham, Nov 18 2007
Cf. variants: A181143, A181144. - Paul D. Hanna, Oct 13 2010
Row sums give A000108 (Catalan numbers), n>0.
A008459 (h-vectors type B associahedra), A033282 (f-vectors type A associahedra), A145903 (h-vectors type D associahedra), A145904 (Hilbert transform). - Peter Bala, Oct 27 2008
Cf. A016098 and A189232 for numbers of crossing set partitions.
Cf. A243752.
Triangles of generalized binomial coefficients (n,k)_m (or generalized Pascal triangles) for m = 1,...,12: A007318 (Pascal), A001263, A056939, A056940, A056941, A142465, A142467, A142468, A174109, A342889, A342890, A342891.

Programs

  • GAP
    Flat(List([1..11],n->List([1..n],k->Binomial(n-1,k-1)*Binomial(n,k-1)/k))); # Muniru A Asiru, Jul 12 2018
  • Haskell
    a001263 n k = a001263_tabl !! (n-1) !! (k-1)
    a001263_row n = a001263_tabl !! (n-1)
    a001263_tabl = zipWith dt a007318_tabl (tail a007318_tabl) where
       dt us vs = zipWith (-) (zipWith (*) us (tail vs))
                              (zipWith (*) (tail us ++ [0]) (init vs))
    -- Reinhard Zumkeller, Oct 10 2013
    
  • Magma
    /* triangle */ [[Binomial(n-1,k-1)*Binomial(n,k-1)/k : k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 19 2014
    
  • Maple
    A001263 := (n,k)->binomial(n-1,k-1)*binomial(n,k-1)/k;
    a:=proc(n,k) option remember; local i; if k=1 or k=n then 1 else add(binomial(n+i-1, 2*k-2)*a(k-1,i),i=1..k-1); fi; end:
    # Alternatively, as a (0,0)-based triangle:
    R := n -> simplify(hypergeom([-n, -n-1], [2], x)): Trow := n -> seq(coeff(R(n,x),x,j), j=0..n): seq(Trow(n), n=0..9); # Peter Luschny, Mar 19 2018
  • Mathematica
    T[n_, k_] := If[k==0, 0, Binomial[n-1, k-1] Binomial[n, k-1] / k];
    Flatten[Table[Binomial[n-1,k-1] Binomial[n,k-1]/k,{n,15},{k,n}]] (* Harvey P. Dale, Feb 29 2012 *)
    TRow[n_] := CoefficientList[Hypergeometric2F1[1 - n, -n, 2, x], x];
    Table[TRow[n], {n, 1, 11}] // Flatten (* Peter Luschny, Mar 19 2018 *)
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Length[Position[#,{}]]==k&]],{n,2,9},{k,1,n-1}] (* Gus Wiseman, Jan 23 2023 *)
    T[1, 1] := 1; T[n_, k_]/;1<=k<=n := T[n, k] = (2n/k-1) T[n-1,k-1] + T[n-1, k]; T[n_, k_] := 0; Flatten@Table[T[n, k], {n, 1, 11}, {k, 1, n}] (* Oliver Seipel, Dec 31 2024 *)
  • PARI
    {a(n, k) = if(k==0, 0, binomial(n-1, k-1) * binomial(n, k-1) / k)};
    
  • PARI
    {T(n,k)=polcoeff(polcoeff(exp(sum(m=1,n,sum(j=0,m,binomial(m,j)^2*y^j)*x^m/m) +O(x^(n+1))),n,x),k,y)} \\ Paul D. Hanna, Oct 13 2010
    
  • Sage
    @CachedFunction
    def T(n, k):
        if k == n or k == 1: return 1
        if k <= 0 or k > n: return 0
        return binomial(n, 2) * (T(n-1, k)/((n-k)*(n-k+1)) + T(n-1, k-1)/(k*(k-1)))
    for n in (1..9): print([T(n, k) for k in (1..n)])  # Peter Luschny, Oct 28 2014
    

Formula

a(n, k) = C(n-1, k-1)*C(n, k-1)/k for k!=0; a(n, 0)=0.
Triangle equals [0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...] where DELTA is Deléham's operator defined in A084938.
0Mike Zabrocki, Aug 26 2004
T(n, k) = C(n, k)*C(n-1, k-1) - C(n, k-1)*C(n-1, k) (determinant of a 2 X 2 subarray of Pascal's triangle A007318). - Gerald McGarvey, Feb 24 2005
T(n, k) = binomial(n-1, k-1)^2 - binomial(n-1, k)*binomial(n-1, k-2). - David Callan, Nov 02 2005
a(n,k) = C(n,2) (a(n-1,k)/((n-k)*(n-k+1)) + a(n-1,k-1)/(k*(k-1))) a(n,k) = C(n,k)*C(n,k-1)/n. - Mitch Harris, Jul 06 2006
Central column = A000891, (2n)!*(2n+1)! / (n!*(n+1)!)^2. - Zerinvary Lajos, Oct 29 2006
G.f.: (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) = Sum_{n>0, k>0} a(n, k)*x^n*y^k.
From Peter Bala, Oct 22 2008: (Start)
Relation with Jacobi polynomials of parameter (1,1):
Row n+1 generating polynomial equals 1/(n+1)*x*(1-x)^n*Jacobi_P(n,1,1,(1+x)/(1-x)). It follows that the zeros of the Narayana polynomials are all real and nonpositive, as noted above. O.g.f for column k+2: 1/(k+1) * y^(k+2)/(1-y)^(k+3) * Jacobi_P(k,1,1,(1+y)/(1-y)). Cf. A008459.
T(n+1,k) is the number of walks of n unit steps on the square lattice (i.e., each step in the direction either up (U), down (D), right (R) or left (L)) starting from the origin and finishing at lattice points on the x axis and which remain in the upper half-plane y >= 0 [Guy]. For example, T(4,3) = 6 counts the six walks RRL, LRR, RLR, UDL, URD and RUD, from the origin to the lattice point (1,0), each of 3 steps. Compare with tables A145596 - A145599.
Define a functional I on formal power series of the form f(x) = 1 + ax + bx^2 + ... by the following iterative process. Define inductively f^(1)(x) = f(x) and f^(n+1)(x) = f(x*f^(n)(x)) for n >= 1. Then set I(f(x)) = lim_{n -> infinity} f^(n)(x) in the x-adic topology on the ring of formal power series; the operator I may also be defined by I(f(x)) := 1/x*series reversion of x/f(x).
The o.g.f. for this array is I(1 + t*x + t*x^2 + t*x^3 + ...) = 1 + t*x + (t + t^2)*x^2 + (t + 3*t^2 + t^3)*x^3 + ... = 1/(1 - x*t/(1 - x/(1 - x*t/(1 - x/(1 - ...))))) (as a continued fraction). Cf. A108767, A132081 and A141618. (End)
G.f.: 1/(1-x-xy-x^2y/(1-x-xy-x^2y/(1-... (continued fraction). - Paul Barry, Sep 28 2010
E.g.f.: exp((1+y)x)*Bessel_I(1,2*sqrt(y)x)/(sqrt(y)*x). - Paul Barry, Sep 28 2010
G.f.: A(x,y) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^2*y^k] * x^n/n ). - Paul D. Hanna, Oct 13 2010
With F(x,t) = (1-(1+t)*x-sqrt(1-2*(1+t)*x+((t-1)*x)^2))/(2*x) an o.g.f. in x for the Narayana polynomials in t, G(x,t) = x/(t+(1+t)*x+x^2) is the compositional inverse in x. Consequently, with H(x,t) = 1/ (dG(x,t)/dx) = (t+(1+t)*x+x^2)^2 / (t-x^2), the n-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*D_x)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*D_u)u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 04 2011
With offset 0, A001263 = Sum_{j>=0} A132710^j / A010790(j), a normalized Bessel fct. May be represented as the Pascal matrix A007318, n!/[(n-k)!*k!], umbralized with b(n)=A002378(n) for n>0 and b(0)=1: A001263(n,k)= b.(n!)/{b.[(n-k)!]*b.(k!)} where b.(n!) = b(n)*b(n-1)...*b(0), a generalized factorial (see example). - Tom Copeland, Sep 21 2011
With F(x,t) = {1-(1-t)*x-sqrt[1-2*(1+t)*x+[(t-1)*x]^2]}/2 a shifted o.g.f. in x for the Narayana polynomials in t, G(x,t)= x/[t-1+1/(1-x)] is the compositional inverse in x. Therefore, with H(x,t)=1/(dG(x,t)/dx)=[t-1+1/(1-x)]^2/{t-[x/(1-x)]^2}, (see A119900), the (n-1)-th Narayana polynomial in t is given by (1/n!)*((H(x,t)*d/dx)^n)x evaluated at x=0, i.e., F(x,t) = exp(x*H(u,t)*d/du) u, evaluated at u = 0. Also, dF(x,t)/dx = H(F(x,t),t). - Tom Copeland, Sep 30 2011
T(n,k) = binomial(n-1,k-1)*binomial(n+1,k)-binomial(n,k-1)*binomial(n,k). - Philippe Deléham, Nov 05 2011
A166360(n-k) = T(n,k) mod 2. - Reinhard Zumkeller, Oct 10 2013
Damped sum of a column, in leading order: lim_{d->0} d^(2k-1) Sum_{N>=k} T(N,k)(1-d)^N=Catalan(n). - Joachim Wuttke, Sep 11 2014
Multiplying the n-th column by n! generates the revert of the unsigned Lah numbers, A089231. - Tom Copeland, Jan 07 2016
Row polynomials: (x - 1)^(n+1)*(P(n+1,(1 + x)/(x - 1)) - P(n-1,(1 + x)/(x - 1)))/((4*n + 2)), n = 1,2,... and where P(n,x) denotes the n-th Legendre polynomial. - Peter Bala, Mar 03 2017
The coefficients of the row polynomials R(n, x) = hypergeom([-n,-n-1], [2], x) generate the triangle based in (0,0). - Peter Luschny, Mar 19 2018
Multiplying the n-th diagonal by n!, with the main diagonal n=1, generates the Lah matrix A105278. With G equal to the infinitesimal generator of A132710, the Narayana triangle equals Sum_{n >= 0} G^n/((n+1)!*n!) = (sqrt(G))^(-1) * I_1(2*sqrt(G)), where G^0 is the identity matrix and I_1(x) is the modified Bessel function of the first kind of order 1. (cf. Sep 21 2011 formula also.) - Tom Copeland, Sep 23 2020
T(n,k) = T(n,k-1)*C(n-k+2,2)/C(k,2). - Yuchun Ji, Dec 21 2020
From Sergii Voloshyn, Nov 25 2024: (Start)
G.f.: F(x,y) = (1-x*(1+y)-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x) is the solution of the differential equation x^3 * d^2(x*F(x,y))/dx^2 = y * d^2(x*F(x,y))/dy^2.
Let E be the operator x*D*D, where D denotes the derivative operator d/dx. Then (1/(n! (1 + n)!)) * E^n(x/(1 - x)) = (row n generating polynomial)/(1 - x)^(2*n+1) = Sum_{k >= 0} C(n-1, k-1)*C(n, k-1)/k*x^k. For example, when n = 4 we have (1/4!/5!)*E^3(x/(1 - x)) = x (1 + 6 x + 6 x^2 + x^3)/(1 - x)^9. (End)

Extensions

Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A004148 Generalized Catalan numbers: a(n+1) = a(n) + Sum_{k=1..n-1} a(k)*a(n-1-k).

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 17, 37, 82, 185, 423, 978, 2283, 5373, 12735, 30372, 72832, 175502, 424748, 1032004, 2516347, 6155441, 15101701, 37150472, 91618049, 226460893, 560954047, 1392251012, 3461824644, 8622571758, 21511212261, 53745962199, 134474581374
Offset: 0

Views

Author

Keywords

Comments

Arises in enumerating secondary structures of RNA molecules. The 17 structures with 6 nucleotides are shown in the illustration (after Waterman, 1978).
Hankel transform is period 8 sequence [1, 0, -1, -1, -1, 0, 1, 1, ...] (A046980).
Enumerates peak-less Motzkin paths of length n. Example: a(5)=8 because we have HHHHH, HHUHD, HUHDH, HUHHD, UHDHH, UHHDH, UHHHD, UUHDD, where U=(1,1), D=(1,-1) and H=(1,0). - Emeric Deutsch, Nov 19 2003
Number of Dyck paths of semilength n-1 with no UUU's and no DDD's, where U=(1,1) and D=(1,-1) (n>0). - Emeric Deutsch, Nov 19 2003
For n >= 1, a(n) = number of dissections of an (n+2)-gon with strictly disjoint diagonals and no diagonal incident with the base. (One side of the (n+2)-gon is designated the base.) - David Callan, Mar 23 2004
For n >= 2, a(n-2)= number of UU-free Motzkin n-paths = number of DU-free Motzkin n-paths. - David Callan, Jul 15 2004
a(n) = number of UU-free Motzkin n-paths containing no low peaks (A low peak is a UD pair at ground level, i.e., whose removal would create a pair of Motzkin paths). For n >= 1, a(n) = number of UU-free Motzkin (n-1)-paths = number of DU-free Motzkin (n-1)-paths. a(n) is asymptotically ~ c n^(-3/2) (1 + phi)^n with c = 1.1043... and phi=(1+sqrt(5))/2. - David Callan, Jul 15 2004. In closed form, c = sqrt(30+14*sqrt(5))/(4*sqrt(Pi)) = 1.104365547309692849... - Vaclav Kotesovec, Sep 11 2013
a(n) = number of Dyck (n+1)-paths with all pyramid sizes >= 2. A pyramid is a maximal subpath of the form k upsteps immediately followed by k downsteps and its size is k. - David Callan, Oct 24 2004
a(n) = number of Dyck paths of semilength n+1 with no small pyramids (n >= 1). A pyramid is a maximal sequence of the form k Us followed by k Ds with k >= 1. A small pyramid is one with k=1. For example, a(4)=4 counts the following Dyck 5-paths (pyramids denoted by lowercase letters and separated by a vertical bar): uuuuuddddd, Uuudd|uuddD, uudd|uuuddd, uuuddd|uudd. - David Callan, Oct 25 2004
From Emeric Deutsch, Jan 08 2006: (Start)
a(n) = number of Motzkin paths of length n-1 with no peaks at level >= 1. Example: a(4)=4 because we have HHH, HUD, UDH and UHD, where U=(1,1), D=(1,-1) and H=(1,0).
a(n) = number of Motzkin paths of length n+1 with no level steps on the x-axis and no peaks at level >=1. Example: a(4)=4 because we have UHHHD, UHDUD, UDUHD and UUHDD, where U=(1,1), D=(1,-1) and H=(1,0).
a(n) = number of Dyck paths of length 2n having no ascents and descents of even length. An ascent (descent) is a maximal sequence of up (down) steps. Example: a(4)=4 because we have UDUDUDUD, UDUUUDDD, UUUDDDUD and UUUDUDDD, where U=(1,1), D=(1,-1) and H=(1,0).
a(n) = number of Dyck paths of length 2n having ascents only of length 1 or 2 and having no peaks of the form UUDD. An ascent is a maximal sequence of up steps. Example: a(4)=4 because we have UDUDUDUD, UDUUDUDD, UUDUDDUD and UUDUDUDD, where U=(1,1), D=(1,-1) and H=(1,0).
a(n) = number of noncrossing partitions of [n+1] having no singletons and in each block the two leftmost points are of the form i,i+1. Example: a(4)=4 because we have 12345, 12/345, 123/45 and 125/34; the noncrossing partition 145/23 does not satisfy the requirements because 1 and 4 are not consecutive.
a(n) = number of noncrossing partitions of [n+1] with no singletons, except possibly the block /1/ and no blocks of the form /i,i+1/, except possibly the block /1,2/. Example: a(4)=4 because we have 12345, 1/2345, 12/345 and 15/234.
(End)
a(n+1) = [1, 1, 2, 4, 8, 17, 37, ...] gives the antidiagonal sums of triangle of Narayana, A001263. - Philippe Deléham, Oct 21 2006
a(n) = number of Dyck (n+1)-paths with no UDUs and no DUDs. For example, a(4)=4 counts UUUUUDDDDD, UUUDDUUDDD, UUDDUUUDDD, UUUDDDUUDD. - David Callan, May 08 2007
a(n) is also the number of Dyck paths of semilength n without height of peaks and valleys 2(mod 3). - Majun (majun(AT)math.sinica.edu.tw), Nov 29 2008
G.f. of a(n+1) is 1/(1-x-x^2-x^3/(1-x-x^2-x^3/(1-... (continued fraction). - Paul Barry, May 20 2009
A Chebyshev transform of the Motzkin numbers A001006: g.f. is the image of (1-x-(1-2x-3x^2)^(1/2))/(2x^2) under the mapping that takes g(x) to (1/(1+x^2))g(x/(1+x^2)). - Paul Barry, Mar 10 2010
For n >= 1, the number of lattice paths of weight n -1 that start in (0,0), end on the horizontal axis and never go below this axis, whose steps are of the following four kinds: an (1,0)-step with weight 1, an (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps. a(4)=4 because, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), we have the following four paths of weight 3: hH, Hh, hhh, and ud. (See the g.f. C(x) on p. 295 of the Bona-Knopfmacher reference.)
From David Callan, Aug 27 2014: (Start)
a(n) = number of noncrossing partitions of [n] with all blocks of size 1 or 2 and no blocks of the form /i,i+1/. Example: a(4)=4 because we have 1234, 13/2/4, 14/2/3, and 1/24/3.
It appears that a(n) = number of permutations of [n] that avoid the three dashed patterns 123, 132, 24-13, and contain no small jumps (jumps of one unit). For example, a(4)=4 counts 3214, 3241, 4213, and 4321 but not 4312 because 12 is a small jump. (End)
Number of DU_{k}-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are P-equivalent iff the positions of pattern P are identical in these paths. - Sergey Kirgizov, Apr 08 2018
a(n) is also the number of 3412-avoiding involutions on [n] with no transpositions of the form (i,i+1). For example, a(4)=4 counts the involutions 1234, 1432, 3214, 4231. - Juan B. Gil, May 23 2020
For n >= 2, a(n) equals the number of Dyck paths with air pockets of length n. A Dyck path with air pockets is a nonempty lattice path in the first quadrant of Z^2 starting at the origin, ending on the x-axis, and consisting of up-steps U = (1,1) and down-steps D_k = (1, -k), k >= 1, where two down-steps cannot be consecutive. For example, the only path of length 2 is UD_1; for length 3 we have UU_D2; for length 4 there are 2 paths: UUUD_3, UD_1UD_1; and for length 5 we have 4 paths: UUUUD_4, UUD_2UD_1, UD_1UUD_2, UUD_1UD_2. - Sergey Kirgizov, Dec 15 2022

Examples

			G.f. = 1 + x + x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 17*x^6 + 37*x^7 + 82*x^8 + 185*x^9 + 432*x^10 + ...
Det([1]) = 1, Det([1, 1; 1, 1]) = 0, Det([1, 1, 1; 1, 1, 2; 1, 2, 4]) = -1. - _Michael Somos_, May 12 2022
		

References

  • A. Nkwanta, Lattice paths and RNA secondary structures, DIMACS Series in Discrete Math. and Theoretical Computer Science, 34, 1997, 137-147.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Second row of A064645.
Cf. A046980 (Hankel transform).

Programs

  • Haskell
    a004148 n = a004148_list !! n
    a004148_list = 1 : f [1] where
    f xs'@(x:xs) = y : f (y : xs') where
    y = x + sum (zipWith (*) xs $ reverse $ tail xs)
    -- Reinhard Zumkeller, Nov 13 2012
    
  • Magma
    R:=PowerSeriesRing(Rationals(), 35); Coefficients(R!( (1-x+x^2 - Sqrt(1-2*x-x^2-2*x^3+x^4))/(2*x^2) )); // G. C. Greubel, Dec 30 2019
    
  • Maple
    w := proc(l) x - 1 - x^2*(1 - x^l)/(1-x) end:
    S := proc(l) (-w(l) - sqrt(w(l)^2 - 4*x^2))/(2*x^2) end:
    # S(0) is g.f. for Motzkin numbers A001006,
    # S(1) is g.f. for this sequence,
    # S(2) is g.f. for A004149, etc.
  • Mathematica
    a[0]=1; a[n_Integer]:= a[n]= a[n-1]+Sum[a[k]*a[n-2-k], {k,n-2}]; Array[a, 35, 0]
    CoefficientList[Series[(1-x+x^2-Sqrt[x^4-2x^3-x^2-2x+1])/(2x^2), {x,0,40}], x] (* Harvey P. Dale, May 09 2011 *)
    a[n_]:= SeriesCoefficient[(1 -x +x^2 -Sqrt[1 -2x -x^2 -2x^3 +x^4])/(2x^2), {x, 0, n}]; (* Michael Somos, Jun 05 2014 *)
    a[n_] := HypergeometricPFQ[{-n/2, (1-n)/2, (1-n)/2, 1-n/2}, {2, -n, -n + 1}, 16]; Array[a, 33, 0] (* Peter Luschny, Jan 25 2020 *)
    Table[If[n==0,1, Sum[(Binomial[n-k,k+1]Binomial[n-k,k]/(n-k)), {k,0,n-1}]], {n,0,10}] (* Rigoberto Florez, Apr 17 2023 *)
    CoefficientList[Nest[1+x(1-x) #+x^2 #^2 &, 1+O[x], 32], x](* Oliver Seipel, Dec 21 2024 *)
  • Maxima
    a(n):=coeff(taylor((1-x+x^2-sqrt(1-2*x-x^2-2*x^3+x^4))/(2*x^2),x,0,n),x, n); makelist(a(n),n,0,12); /* Emanuele Munarini, Jul 07 2001 */
    
  • PARI
    {a(n) = polcoeff( (1 - x + x^2 - sqrt(1 - 2*x - x^2 + x^3 * (-2 + x + O(x^n)))) / 2, n + 2)}; /* Michael Somos, Jul 20 2003 */
    
  • PARI
    a(n,m=1)=sum(k=0,n,sum(j=0,k,binomial(n-k+j+m,n-k)*m/(n-k+j+m)*binomial(n-k,k-j)*binomial(k-j,j))) \\ Paul D. Hanna, Jun 26 2009
    
  • PARI
    {a(n)=polcoeff(1+x*exp(sum(m=1,n,sum(k=0,m,binomial(m,k)^2*x^k)*x^m/m)+x*O(x^n)),n)} /* Paul D. Hanna, Mar 15 2011 */
    
  • PARI
    {a(n)=local(A051292=1+(1-x^2)/sqrt((1-3*x+x^2)*(1+x+x^2) +x*O(x^n)));polcoeff(exp(sum(m=1,n,polcoeff(A051292,m)*x^m/m)+x*O(x^n)),n)} /* Paul D. Hanna, Mar 15 2011 */
    
  • PARI
    {a(n) = my(A = 1 + O(x)); for(k=1, n, A = 1 - x / (x^2 - 1/A)); polcoeff( A, n)}; /* Michael Somos, Jun 05 2014 */
    
  • Sage
    def A004148_list(prec):
        P = PowerSeriesRing(ZZ, 'x', prec)
        x = P.gen().O(prec)
        return ( (1-x+x^2 -sqrt(1-2*x-x^2-2*x^3+x^4))/(2*x^2) ).list()
    A004148_list(35) # G. C. Greubel, Dec 30 2019

Formula

a(n+1) = a(n) + a(1)*a(n-2) + a(2)*a(n-3) + ... + a(n-1)*a(0).
G.f.: (1 - x + x^2 - sqrt(1 - 2*x - x^2 - 2*x^3 + x^4)) / (2*x^2). - Michael Somos, Jul 20 2003
G.f.: (1/z)*(1-C(-z/(1-3*z+z^2))), where C(z)=(1-sqrt(1-4*z))/(2*z) is the Catalan function. - Emeric Deutsch, Nov 19 2003
G.f.: 1 + F(x, x)/x, where F(x, t) is the g.f. of the Narayana numbers: xF^2 - (1-x-tx)F + tx = 0. - Emeric Deutsch, Nov 19 2003
G.f. A(x) satisfies the functional equation: x^2*A(x)^2 - (x^2 - x + 1)*A(x) + 1 = 0. - Michael Somos, Jul 20 2003
Series reversion of g.f. A(x) is -A(-x) (if offset 1). - Michael Somos, Jul 20 2003
a(n) = A088518(2n) + A088518(2n+1) - A088518(2n+2). - Emeric Deutsch, Nov 19 2003
a(n) = Sum_{k=ceiling((n+1)/2)..n} (binomial(k, n-k)*binomial(k, n-k+1)/k) for n >= 1. - Emeric Deutsch, Nov 12 2003 This formula counts (i) disjoint-diagonal dissections by number of diagonals, (ii) peak-less Motzkin paths by number of up steps, (iii) UUU- and DDD-free Dyck paths by number of ascents. - David Callan, Mar 23 2004
a(n) = Sum_{k=0..floor(n/2)} A131198(n-k,k). - Philippe Deléham, Nov 06 2007
G.f.: 1/(1-x/(1-x^2/(1-x/(1-x^2/(1-x/(1-x^2/(1-x... (continued fraction). - Paul Barry, Dec 08 2008
G.f.: 1/(1-x/(1-x(x-1)-x/(1-x(x-1)-x/(1-x(x-1)-x/(1-... (continued fraction). - Paul Barry, May 16 2009
From Paul D. Hanna, Jun 26 2009: (Start)
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n, then
a(n,m) = Sum_{k=0..n} Sum_{j=0..k} C(n-k+j+m,n-k)*m/(n-k+j+m) * C(n-k,k-j)*C(k-j,j).
(End)
From Paul Barry, Mar 10 2010: (Start)
G.f.: (1/(1+x^2))*M(x/(1+x^2)), M(x) the g.f. of the Motzkin numbers A001006;
G.f.: 1/(1-x+x^2-x^2/(1-x+x^2-x^2/(1-x+x^2-x^2/(1-x+x^2-x^2/(1-... (continued fraction).
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*C(n-k,k)*A001006(n-2*k). (End)
G.f.: 1 + x*exp( Sum_{n>=1} (x^n/n)*(Sum_{k=0..n} C(n,k)^2*x^k) ). - Paul D. Hanna, Mar 15 2011
G.f.: exp( Sum_{n>=1} A051292(n)*x^n/n ), where A051292(n) is a Whitney number of level n. - Paul D. Hanna, Mar 15 2011
Let the g.f. be A(x), then B(x)=(1+x*A(x)) = 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1+x+x^2), B(x) = 1 +1*x + 1*x^2 +1*x^3 + 2*x^4 + 4*x^5 + ... is the g.f. of this sequence prepended with 1; more generally B(x) = C(x/(1+x+x^2)) where C(x) is the g.f. for the Catalan numbers (A000108). - Joerg Arndt, Mar 18 2011
D-finite with recurrence: (n+2)*a(n) - (2n+1)*a(n-1) + (1-n)*a(n-2) + (5-2n)*a(n-3) + (n-4)*a(n-4) = 0. - R. J. Mathar, Dec 01 2011. This recurrence follows from the Wilf-Zeilberger (WZ) proof technique applied to Sum_{k=ceiling((n+1)/2)..n} (binomial(k,n-k) * binomial(k,n-k+1)/k). - T. Amdeberhan, Jul 23 2012
Given g.f. A(x), then B(x) = x * A(x) satisfies B(x) = x + x*B(x) / (1 - x*B(x)). - Michael Somos, Jun 05 2014
G.f.: 1 - x / (x^2 - 1 / (1 - x / (x^2 - 1 / (1 - x / (x^2 - ...))))). - Michael Somos, Jun 05 2014
0 = a(n)*(a(n+1) - 5*a(n+2) - 4*a(n+3) - 11*a(n+4) + 7*a(n+5)) + a(n+1)*(a(n+1) + 6*a(n+2) + 12*a(n+3) + 11*a(n+4) - 11*a(n+5)) + a(n+2)*(-a(n+2) - 7*a(n+3) + 12*a(n+4) - 4*a(n+5)) + a(n+3)*(-a(n+3) + 6*a(n+4) - 5*a(n+5)) + a(n+4)*(a(n+4) + a(n+5)) if n >= -1. - Michael Somos, Jun 05 2014
a(n) = hypergeom([-n/2, (1 - n)/2, (1 - n)/2, 1 - n/2], [2, -n, -n + 1], 16). - Peter Luschny, Jan 25 2020
a(n) = Sum_{k=0..n-1} binomial(n-k,k+1)*binomial(n-k,k)/(n-k) for n > 0. - Rigoberto Florez, Apr 17 2023
a(n) ~ 5^(1/4) * phi^(2*n + 2) / (2 * sqrt(Pi) * n^(3/2)), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, May 05 2023

A090181 Triangle of Narayana (A001263) with 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 20, 10, 1, 0, 1, 15, 50, 50, 15, 1, 0, 1, 21, 105, 175, 105, 21, 1, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 0, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 0, 1, 55, 825, 4950, 13860
Offset: 0

Views

Author

Philippe Deléham, Jan 19 2004

Keywords

Comments

Number of Dyck n-paths with exactly k peaks. - Peter Luschny, May 10 2014

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,  1;
[3] 0, 1,  3,   1;
[4] 0, 1,  6,   6,    1;
[5] 0, 1, 10,  20,   10,    1;
[6] 0, 1, 15,  50,   50,   15,    1;
[7] 0, 1, 21, 105,  175,  105,   21,   1;
[8] 0, 1, 28, 196,  490,  490,  196,  28,  1;
[9] 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1;
		

Crossrefs

Mirror image of triangle A131198. A000108 (row sums, Catalan).
Sum_{k=0..n} T(n,k)*x^k = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n) for x=0,1,2,3,4,5,6,7,8,9. - Philippe Deléham, Aug 10 2006
Sum_{k=0..n} x^(n-k)*T(n,k) = A090192(n+1), A000012(n), A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11. - Philippe Deléham, Oct 21 2006
Sum_{k=0..n} T(n,k)*x^k*(x-1)^(n-k) = A000012(n), A006318(n), A103210(n), A103211(n), A133305(n), A133306(n), A133307(n), A133308(n), A133309(n) for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, respectively. - Philippe Deléham, Oct 20 2007

Programs

  • Magma
    [[(&+[(-1)^(j-k)*Binomial(2*n-j,j)*Binomial(j,k)*Binomial(2*n-2*j,n-j)/(n-j+1): j in [0..n]]): k in [0..n]]: n in [0..10]];
  • Maple
    A090181 := (n,k) -> binomial(n,n-k)*binomial(n-1,n-k)/(n-k+1):
    seq(print( seq(A090181(n,k),k=0..n)),n=0..5); # Peter Luschny, May 10 2014
    egf := 1+int((sqrt(t)*exp((1+t)*x)*BesselI(1,2*sqrt(t)*x))/x,x);
    s := n -> n!*coeff(series(egf,x,n+2),x,n);
    seq(print(seq(coeff(s(n),t,j),j=0..n)),n=0..9); # Peter Luschny, Oct 30 2014
    T := proc(n, k) option remember; if k = n or k = 1 then 1 elif k < 1 then 0 else (2*n/k - 1) * T(n-1, k-1) + T(n-1, k) fi end:
    for n from 0 to 8 do seq(T(n, k), k = 0..n) od;  # Peter Luschny, Dec 31 2024
  • Mathematica
    Flatten[Table[Sum[(-1)^(j-k) * Binomial[2n-j,j] * Binomial[j,k] * CatalanNumber[n-j], {j, 0, n}], {n,0,11},{k,0,n}]] (* Indranil Ghosh, Mar 05 2017 *)
    p[0, ] := 1; p[1, x] := x; p[n_, x_] := ((2 n - 1) (1 + x) p[n - 1, x] - (n - 2) (x - 1)^2 p[n - 2, x]) / (n + 1);
    Table[CoefficientList[p[n, x], x], {n, 0, 9}] // TableForm (* Peter Luschny, Apr 26 2022 *)
  • PARI
    c(n) = binomial(2*n,n)/ (n+1);
    tabl(nn) = {for(n=0, nn, for(k=0, n, print1(sum(j=0, n, (-1)^(j-k) * binomial(2*n-j,j) * binomial(j,k) * c(n-j)),", ");); print(););};
    tabl(11); \\ Indranil Ghosh, Mar 05 2017
    
  • Python
    from functools import cache
    @cache
    def Trow(n):
        if n == 0: return [1]
        if n == 1: return [0, 1]
        if n == 2: return [0, 1, 1]
        A = Trow(n - 2) + [0, 0]
        B = Trow(n - 1) + [1]
        for k in range(n - 1, 1, -1):
            B[k] = (((B[k] + B[k - 1]) * (2 * n - 1)
                   - (A[k] - 2 * A[k - 1] + A[k - 2]) * (n - 2)) // (n + 1))
        return B
    for n in range(10): print(Trow(n)) # Peter Luschny, May 02 2022
    
  • Sage
    def A090181_row(n):
        U = [0]*(n+1)
        for d in DyckWords(n):
            U[d.number_of_peaks()] +=1
        return U
    for n in range(8): A090181_row(n) # Peter Luschny, May 10 2014
    

Formula

Triangle T(n, k), read by rows, given by [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...] where DELTA is the operator defined in A084938. T(0, 0) = 1, T(n, 0) = 0 for n>0, T(n, k) = C(n-1, k-1)*C(n, k-1)/k for k>0.
Sum_{j>=0} T(n,j)*binomial(j,k) = A060693(n,k). - Philippe Deléham, May 04 2007
Sum_{k=0..n} T(n,k)*10^k = A143749(n+1). - Philippe Deléham, Oct 14 2008
From Paul Barry, Nov 10 2008: (Start)
Coefficient array of the polynomials P(n,x) = x^n*2F1(-n,-n+1;2;1/x).
T(n,k) = Sum_{j=0..n} (-1)^(j-k)*C(2n-j,j)*C(j,k)*A000108(n-j). (End)
Sum_{k=0..n} T(n,k)*5^k*3^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
Sum_{k=0..n} T(n,k)*(-2)^k = A152681(n); Sum_{k=0..n} T(n,k)*(-1)^k = A105523(n). - Philippe Deléham, Feb 03 2009
Sum_{k=0..n} T(n,k)*2^(n+k) = A156017(n). - Philippe Deléham, Nov 27 2011
T(n, k) = C(n,n-k)*C(n-1,n-k)/(n-k+1). - Peter Luschny, May 10 2014
E.g.f.: 1+Integral((sqrt(t)*exp((1+t)*x)*BesselI(1,2*sqrt(t)*x))/x dx). - Peter Luschny, Oct 30 2014
G.f.: (1+x-x*y-sqrt((1-x*(1+y))^2-4*y*x^2))/(2*x). - Alois P. Heinz, Nov 28 2021, edited by Ron L.J. van den Burg, Dec 19 2021
T(n, k) = [x^k] (((2*n - 1)*(1 + x)*p(n-1, x) - (n - 2)*(x - 1)^2*p(n-2, x))/(n + 1)) with p(0, x) = 1 and p(1, x) = x. - Peter Luschny, Apr 26 2022
Recursion based on rows (see the Python program):
T(n, k) = (((B(k) + B(k-1))*(2*n - 1) - (A(k) - 2*A(k-1) + A(k-2))*(n-2))/(n+1)), where A(k) = T(n-2, k) and B(k) = T(n-1, k), for n >= 3. # Peter Luschny, May 02 2022

A133336 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,1,1,1,1,1,...] DELTA [0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 1, 0, 2, 1, 0, 5, 5, 1, 0, 14, 21, 9, 1, 0, 42, 84, 56, 14, 1, 0, 132, 330, 300, 120, 20, 1, 0, 429, 1287, 1485, 825, 225, 27, 1, 0, 1430, 5005, 7007, 5005, 1925, 385, 35, 1, 0, 4862, 19448, 32032, 28028, 14014, 4004, 616, 44, 1, 0, 16796, 75582, 143208, 148512, 91728, 34398, 7644, 936, 54, 1, 0
Offset: 0

Views

Author

Philippe Deléham, Oct 19 2007

Keywords

Comments

Mirror image of triangle A086810; another version of A126216.
Equals A131198*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 23 2007
Diagonal sums: A119370. - Philippe Deléham, Nov 09 2009

Examples

			Triangle begins:
    1;
    1,    0;
    2,    1,    0;
    5,    5,    1,   0;
   14,   21,    9,   1,   0;
   42,   84,   56,  14,   1,  0;
  132,  330,  300, 120,  20,  1, 0;
  429, 1287, 1485, 825, 225, 27, 1, 0;
		

Crossrefs

Programs

  • Magma
    [[Binomial(n-1,k)*Binomial(2*n-k,n)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 05 2018
  • Mathematica
    Table[Binomial[n-1,k]*Binomial[2*n-k,n]/(n+1), {n,0,10}, {k,0,n}] // Flatten (* G. C. Greubel, Feb 05 2018 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(binomial(n-1,k)*binomial(2*n-k,n)/(n+1), ", "))) \\ G. C. Greubel, Feb 05 2018
    

Formula

Sum_{k=0..n} T(n,k)*x^k = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 05 2007
Sum_{k=0..n} T(n,k)*(-2)^k*5^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
T(n,k) = binomial(n-1,k)*binomial(2n-k,n)/(n+1), k <= n. - Philippe Deléham, Nov 02 2009

A154825 Reversion of x*(1-2*x)/(1-3*x).

Original entry on oeis.org

1, -1, -1, 1, 5, 3, -21, -51, 41, 391, 407, -1927, -6227, 2507, 49347, 71109, -236079, -966129, 9519, 7408497, 13685205, -32079981, -167077221, -60639939, 1209248505, 2761755543, -4457338681, -30629783831, -22124857219, 206064020315, 572040039283, -590258340811
Offset: 0

Views

Author

Paul Barry, Jan 15 2009

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1+3*x-Sqrt(1-2*x+9*x^2))/(4*x) )); // G. C. Greubel, May 24 2022
    
  • Maple
    A154825_list := proc(n) local j, a, w; a := array(0..n); a[0] := 1;
    for w from 1 to n do a[w] := -a[w-1]+2*add(a[j]*a[w-j-1],j=1..w-1)od;
    convert(a, list) end: A154825_list(28); # Peter Luschny, May 19 2011
  • Mathematica
    CoefficientList[Series[(1+3*x-Sqrt[1-2*x+9*x^2])/(4*x), {x, 0, 40}], x] (* Vaclav Kotesovec, Feb 08 2014 *)
  • SageMath
    [sum(binomial(n+k,n-k)*catalan_number(k)*2^k*(-3)^(n-k) for k in (0..n)) for n in (0..40)] # G. C. Greubel, May 24 2022

Formula

G.f.: (1+3*x-sqrt(1-2*x+9*x^2))/(4*x). - corrected by Vaclav Kotesovec, Feb 08 2014
G.f.: 1/(1+x/(1-2x/(1+x/(1-2x/(1+x/(1-2x/(1+.... (continued fraction).
a(n) = Sum_{k=0..n} binomial(n+k, 2k)*A000108(k)*2^k*(-3)^(n-k).
From Philippe Deléham, Jan 17 2009: (Start)
a(n) = Sum_{k=0..n} A131198(n,k)*(-1)^(n-k)*2^k.
a(n) = Sum_{k=0..n} A090181(n,k)*(-1)^k*2^(n-k).
a(n) = Sum_{k=0..n} A060693(n,k)*2^(n-k)*(-3)^k.
a(n) = Sum_{k=0..n} A088617(n,k)*2^k*(-3)^(n-k).
a(n) = Sum_{k=0..n} A086810(n,k)*(-1)^k*3^(n-k).
a(n) = Sum_{k=0..n} A133336(n,k)*3^k*(-1)^(n-k). (End)
D-finite with recurrence (n+1)*a(n) = (2*n-1)*a(n-1) - 9*(n-2)*a(n-2). - R. J. Mathar, Nov 15 2012
a(n) = (-3)^n*Hypergeometric2F1([-n, n+1], [2]; 2/3). - G. C. Greubel, May 24 2022

A152601 a(n) = Sum_{k=0..n} C(n+k,2k)*A000108(k)*3^k*2^(n-k).

Original entry on oeis.org

1, 5, 40, 395, 4360, 51530, 637840, 8163095, 107140360, 1434252230, 19507077040, 268796321870, 3744480010960, 52647783144980, 746145741252640, 10648007952942095, 152877753577617160, 2206713692628578030
Offset: 0

Views

Author

Paul Barry, Dec 09 2008

Keywords

Comments

Hankel transform is 15^C(n+1,2).

Crossrefs

Formula

a(n) = A152600(n+1)/2.
a(n) = Sum_{k=0..n} A088617(n,k)*3^k*2^(n-k) = Sum_{k=0..n} A060693(n,k)*2^k*3^(n-k). - Philippe Deléham, Dec 10 2008
a(n) = Sum_{k=0..n} A090181(n,k)*5^k*3^(n-k). - Philippe Deléham, Dec 10 2008
a(n) = Sum_{k=0..n} A131198(n,k)*3^k*5^(n-k). - Philippe Deléham, Dec 10 2008
a(n) = Sum_{k=0..n} A133336(n,k)*(-2)^k*5^(n-k) = Sum_{k=0..n} A086810(n,k)*5^k*(-2)^(n-k). - Philippe Deléham, Dec 10 2008
G.f.: 1/(1-5x/(1-3x/(1-5x/(1-3x/(1-5x/(1-3x/(1-5x/(1-... (continued fraction). - Philippe Deléham, Nov 28 2011
Conjecture: (n+1)*a(n) +8*(-2*n+1)*a(n-1) +4*(n-2)*a(n-2)=0. - R. J. Mathar, Nov 24 2012
G.f.: 1/G(x), with G(x) = 1-2*x-(3*x)/G(x) (continued fraction). - Nikolaos Pantelidis, Jan 09 2023
Showing 1-7 of 7 results.