A086810
Triangle obtained by adding a leading diagonal 1,0,0,0,... to A033282.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 9, 21, 14, 0, 1, 14, 56, 84, 42, 0, 1, 20, 120, 300, 330, 132, 0, 1, 27, 225, 825, 1485, 1287, 429, 0, 1, 35, 385, 1925, 5005, 7007, 5005, 1430, 0, 1, 44, 616, 4004, 14014, 28028, 32032, 19448, 4862, 0, 1, 54, 936, 7644, 34398, 91728
Offset: 0
Triangle starts:
1;
0, 1;
0, 1, 2;
0, 1, 5, 5;
0, 1, 9, 21, 14;
...
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
- Yu Hin (Gary) Au, Some Properties and Combinatorial Implications of Weighted Small Schröder Numbers, arXiv:1912.00555 [math.CO], 2019.
- Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.
- Paul Barry, Three Études on a sequence transformation pipeline, arXiv:1803.06408 [math.CO], 2018.
- Paul Barry, Generalized Catalan Numbers Associated with a Family of Pascal-like Triangles, J. Int. Seq., Vol. 22 (2019), Article 19.5.8.
- V. Buchstaber and E. Bunkova,Elliptic formal group laws, integral Hirzebruch genera and Kirchever genera,, arXiv:1010.0944 [math-ph], 2010 (see p. 19).
- V. Buchstaber and T. Panov, Toric Topology. Chapter 1: Geometry and Combinatorics of Polytopes,, arXiv:1102.1079 [math.CO], 2011-2012 (see p. 41).
- G. Chatel, V. Pilaud, Cambrian Hopf Algebras, arXiv:1411.3704 [math.CO], 2014-2015.
- T. Copeland, Generators, Inversion, and Matrix, Binomial, and Integral Transforms, 2015.
- T. Copeland, Compositional inverse pairs, the Burgers-Hopf equation, and the Stasheff associahedra, 2014.
- T. Copeland, Lagrange a la Lah, 2011.
- B. Drake, Ira M. Gessel, and Guoce Xin, Three Proofs and a Generalization of the Goulden-Litsyn-Shevelev Conjecture on a Sequence Arising in Algebraic Geometry, J. of Integer Sequences, Vol. 10 (2007), Article 07.3.7.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973, p. 21-22.
- G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
- J. Zhou, Quantum deformation theory of the Airy curve and the mirror symmetry of a point, arXiv preprint arXiv:1405.5296 [math.AG], 2014.
Diagonals:
A000007,
A000012,
A000096,
A033275,
A033276,
A033277,
A033278,
A033279,
A000108,
A002054,
A002055,
A002056,
A007160,
A033280,
A033281.
Row sums:
A001003 (Schroeder numbers).
-
Table[Boole[n == 2] + If[# == -1, 0, Binomial[n - 3, #] Binomial[n + # - 1, #]/(# + 1)] &[k - 1], {n, 2, 12}, {k, 0, n - 2}] // Flatten (* after Jean-François Alcover at A033282, or *)
Table[If[n == 0, 1, Binomial[n, k] Binomial[n + k, k - 1]/n], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Aug 22 2016 *)
-
t(n, k) = if (n==0, 1, binomial(n, k)*binomial(n+k, k-1)/n);
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n,k), ", ");); print(););} \\ Michel Marcus, Nov 22 2014
A091593
Reversion of Jacobsthal numbers A001045.
Original entry on oeis.org
1, -1, -1, 5, -3, -21, 51, 41, -391, 407, 1927, -6227, -2507, 49347, -71109, -236079, 966129, 9519, -7408497, 13685205, 32079981, -167077221, 60639939, 1209248505, -2761755543, -4457338681, 30629783831, -22124857219, -206064020315, 572040039283, 590258340811
Offset: 0
-
a := n -> hypergeom([-n,-n-1], [2], -2);
seq(simplify(a(n)), n=0..30); # Peter Luschny, Sep 22 2014
# Using function CompInv from A357588.
CompInv(25, n -> (2^n - (-1)^n)/3 ); # Peter Luschny, Oct 07 2022
-
a[n_] := Hypergeometric2F1[-n - 1, -n - 1, 2, -2] + (n + 1)*Hypergeometric2F1[-n, -n, 3, -2]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Oct 03 2016, after Vladimir Kruchinin *)
-
a(n) := hypergeometric([ -n - 1, -n - 1 ], [ 2 ], -2) + (n + 1) * hypergeometric([ -n, -n ], [ 3 ], -2); /* Vladimir Kruchinin, Oct 12 2011 */
-
# Algorithm of L. Seidel (1877)
def A091593_list(n) :
D = [0]*(n+2); D[1] = 1
R = []; b = false; h = 1
for i in range(2*n) :
if b :
for k in range(1, h, 1) : D[k] += -2*D[k+1]
R.append(D[1])
else :
for k in range(h, 0, -1) : D[k] += D[k-1]
h += 1
b = not b
return R
A091593_list(30) # Peter Luschny, Oct 19 2012
A336709
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} (-2)^(n-j) * binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 1, -2, 1, 1, -1, 2, 1, 1, 0, -1, 4, 1, 1, 1, -1, 5, -24, 1, 1, 2, 2, 0, -3, 48, 1, 1, 3, 8, 5, 2, -21, 24, 1, 1, 4, 17, 36, 13, 0, 51, -464, 1, 1, 5, 29, 109, 177, 36, -5, 41, 1376, 1, 1, 6, 44, 240, 766, 922, 104, 0, -391, -704
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
-2, -1, 0, 1, 2, 3, 4, ...
2, -1, -1, 2, 8, 17, 29, ...
4, 5, 0, 5, 36, 109, 240, ...
-24, -3, 2, 13, 177, 766, 2177, ...
48, -21, 0, 36, 922, 5699, 20910, ...
-
T[0, k_] := 1; T[n_, k_] := Sum[(-2)^(n - j) * Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
-
{T(n, k) = if(n==0, 1, sum(j=1, n, (-2)^(n-j)*binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
-
{T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1+2*x*A)); polcoef(A, n)}
A336727
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} (-k)^(n-j) * binomial(n,j) * binomial(n,j-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -1, 1, 1, 1, -2, -1, 0, 1, 1, 1, -3, 1, 5, 2, 1, 1, 1, -4, 5, 10, -3, 0, 1, 1, 1, -5, 11, 9, -38, -21, -5, 1, 1, 1, -6, 19, -4, -103, 28, 51, 0, 1, 1, 1, -7, 29, -35, -174, 357, 289, 41, 14, 1, 1, 1, -8, 41, -90, -203, 1176, -131, -1262, -391, 0, 1
Offset: 0
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
1, -1, -1, 1, 5, 11, 19, ...
1, 0, 5, 10, 9, -4, -35, ...
1, 2, -3, -38, -103, -174, -203, ...
1, 0, -21, 28, 357, 1176, 2575, ...
-
T[0, k_] := 1; T[n_, k_] := Sum[If[k == 0, Boole[n == j],(-k)^(n - j)] * Binomial[n, j] * Binomial[n , j - 1], {j, 1, n}] / n; Table[T[k, n- k], {n, 0, 11}, {k, 0, n}] //Flatten (* Amiram Eldar, Aug 02 2020 *)
-
{T(n, k) = if(n==0, 1, sum(j=1, n, (-k)^(n-j)*binomial(n, j)*binomial(n, j-1))/n)}
-
{T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A/(1+k*x*A)); polcoef(A, n)}
-
{T(n, k) = sum(j=0, n, (-k)^j*(k+1)^(n-j)*binomial(n, j)*binomial(n+j, n)/(j+1))}
A352687
Triangle read by rows, a Narayana related triangle whose rows are refinements of twice the Catalan numbers (for n >= 2).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 4, 1, 0, 1, 7, 12, 7, 1, 0, 1, 11, 30, 30, 11, 1, 0, 1, 16, 65, 100, 65, 16, 1, 0, 1, 22, 126, 280, 280, 126, 22, 1, 0, 1, 29, 224, 686, 980, 686, 224, 29, 1, 0, 1, 37, 372, 1512, 2940, 2940, 1512, 372, 37, 1
Offset: 0
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 1;
[3] 0, 1, 2, 1;
[4] 0, 1, 4, 4, 1;
[5] 0, 1, 7, 12, 7, 1;
[6] 0, 1, 11, 30, 30, 11, 1;
[7] 0, 1, 16, 65, 100, 65, 16, 1;
[8] 0, 1, 22, 126, 280, 280, 126, 22, 1;
[9] 0, 1, 29, 224, 686, 980, 686, 224, 29, 1;
- Xi Chen, Arthur Li Bo Yang, James Jing Yu Zhao, Recurrences for Callan's Generalization of Narayana Polynomials, J. Syst. Sci. Complex (2021).
- Peter Luschny, Illustration of the polynomials.
- Robert A. Sulanke, The Narayana distribution, J. Statist. Plann. Inference, 2002, 101: 311-326, formula 2.
-
T := (n, k) -> if n = k then 1 elif k = 0 then 0 else
binomial(n, k)^2*(k*(2*k^2 + (n + 1)*(n - 2*k))) / (n^2*(n - 1)*(n - k + 1)) fi:
seq(seq(T(n, k), k = 0..n), n = 0..10);
# Alternative:
gf := 1 - x + (1 + y)*(1 - x*(y - 1) - sqrt((x*y + x - 1)^2 - 4*x^2*y))/2:
serx := expand(series(gf, x, 16)): coeffy := n -> coeff(serx, x, n):
seq(seq(coeff(coeffy(n), y, k), k = 0..n), n = 0..10);
# Using polynomial recurrence:
P := proc(n, x) option remember; if n < 3 then [1, x, x + x^2] [n + 1] else
((2*n - 3)*(x + 1)*P(n - 1, x) - (n - 3)*(x - 1)^2*P(n - 2, x)) / n fi end:
Trow := n -> seq(coeff(P(n, x), x, k), k = 0..n): seq(Trow(n), n = 0..10);
# Represented by generalized Narayana polynomials:
N := (n, k, x) -> add(((k+1)/(n-k))*binomial(n-k,j-1)*binomial(n-k,j+k)*x^(j+k), j=0..n-2*k): seq(print(ifelse(n=0, 1, expand(N(n,0,x) - N(n,1,x)))), n=0..7);
-
H[0, ] := 1; H[1, x] := x;
H[n_, x_] := x*(x + 1)*Hypergeometric2F1[1 - n, 2 - n, 2, x];
Hrow[n_] := CoefficientList[H[n, x], x]; Table[Hrow[n], {n, 0, 9}] // TableForm
-
from math import comb as binomial
def T(n, k):
if k == n: return 1
if k == 0: return 0
return ((binomial(n, k)**2 * (k * (2 * k**2 + (n + 1) * (n - 2 * k))))
// (n**2 * (n - 1) * (n - k + 1)))
def Trow(n): return [T(n, k) for k in range(n + 1)]
for n in range(10): print(Trow(n))
-
# The recursion with cache is (much) faster:
from functools import cache
@cache
def T_row(n):
if n < 3: return ([1], [0, 1], [0, 1, 1])[n]
A = T_row(n - 2) + [0, 0]
B = T_row(n - 1) + [1]
for k in range(n - 1, 1, -1):
B[k] = (((B[k] + B[k - 1]) * (2 * n - 3)
- (A[k] - 2 * A[k - 1] + A[k - 2]) * (n - 3)) // n)
return B
for n in range(10): print(T_row(n))
Showing 1-5 of 5 results.
Comments