Yu Hin Au has authored 4 sequences.
A336529
a(n) = (n^3+5*n+3)/3 + 2*floor(n/2) + a(n-2), with a(0)=1 and a(1)=3.
Original entry on oeis.org
1, 3, 10, 20, 43, 75, 132, 208, 325, 475, 686, 948, 1295, 1715, 2248, 2880, 3657, 4563, 5650, 6900, 8371, 10043, 11980, 14160, 16653, 19435, 22582, 26068, 29975, 34275, 39056, 44288, 50065, 56355, 63258, 70740, 78907, 87723, 97300, 107600, 118741, 130683, 143550, 157300
Offset: 0
To see a(2)=10, let S = {{1,2},{3,4}}. Then a representative from each of the 10 equivalence classes are
1. {{1,2}, {3,4}}
2. {{1,3}, {2,4}}
3. {{1,5}, {3,4}}
4. {{1,3}, {4,5}}
5. {{1,2}, {5,6}}
6. {{1,3}, {5,6}}
7. {{1,5}, {2,6}}
8. {{1,5}, {3,6}}
9. {{1,5}, {6,7}}
10. {{5,6}, {7,8}}
Likewise, in the 2 X 2 matrix interpretation, a representative from each of the a(2)=10 equivalence classes are
[2 0 ; 0 2]
[1 1 ; 1 1]
[2 0 ; 0 1]
[1 1 ; 1 0]
[2 0 ; 0 0]
[1 1 ; 0 0]
[1 0 ; 1 0]
[1 0 ; 0 1]
[1 0 ; 0 0]
[0 0 ; 0 0]
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Yu Hin Au, Nathan Lindzey, and Levent Tunçel, Matchings, hypergraphs, association schemes, and semidefinite optimization, arXiv:2008.08628 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
-
Nest[Append[#1, (#2^3 + 5 #2 + 3)/3 + 2*Floor[#2/2] + #1[[-2]] ] & @@ {#, Length@ #} &, {1, 3}, 42] (* Michael De Vlieger, Nov 04 2020 *)
LinearRecurrence[{3,-1,-5,5,1,-3,1},{1,3,10,20,43,75,132},60] (* Harvey P. Dale, May 28 2021 *)
-
Vec((1 + 2*x^2 - 2*x^3 + 3*x^4) / ((1 - x)^5*(1 + x)^2) + O(x^40)) \\ Colin Barker, Nov 05 2020
A322543
Number of triadic partitions of the unit square into (2n+1) subrectangles.
Original entry on oeis.org
1, 2, 12, 96, 879, 8712, 90972, 985728, 10979577, 124937892, 1446119664, 16972881120, 201526230555, 2416309004872, 29215072931136, 355800894005760, 4360705642282569, 53744080256387478, 665667989498682936, 8281518339078928800, 103441301833577854041, 1296713265300164761632
Offset: 0
-
a:= n-> coeff(series(RootOf(G^9-2*G^3+G-x, G), x, 2*n+2), x, 2*n+1):
seq(a(n), n=0..25); # Alois P. Heinz, Dec 14 2018
-
a[n_] := SeriesCoefficient[InverseSeries[x - 2 x^3 + x^9 + O[x]^(2n+2), x], {x, 0, 2n+1}];
Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Aug 13 2019, from PARI *)
-
a(n)={polcoef(serreverse(x - 2*x^3 + x^9 + O(x^(2*n+2))), 2*n+1)} \\ Andrew Howroyd, Dec 14 2018
A316587
a(n) = [x^(2n)y^n] Product_{i>=1} 1/((1-x^(2i-1)y^i)(1-x^(2i-1)y^(i-1))(1-x^(2i)y^i)^2).
Original entry on oeis.org
1, 3, 10, 27, 69, 161, 361, 767, 1578, 3134, 6064, 11432, 21105, 38175, 67863, 118658, 204455, 347439, 583063, 966952, 1586231, 2575474, 4141832, 6600731, 10430455, 16349788, 25434178, 39280676, 60250276, 91810915, 139034070, 209294256, 313269591, 466343647
Offset: 0
To see a(2)=10, let S = {{1,2},{3,4}}. Then a representative from each of the 10 equivalence classes are
1. {{1,2}, {3,4}}
2. {{1,3}, {2,4}}
3. {{1,5}, {3,4}}
4. {{1,3}, {4,5}}
5. {{1,2}, {5,6}}
6. {{1,3}, {5,6}}
7. {{1,5}, {2,6}}
8. {{1,5}, {3,6}}
9. {{1,5}, {6,7}}
10. {{5,6}, {7,8}}
If the equivalence relation is defined as T~T' if and only if there exists an automorphism of G mapping union of S,T to union of S,T' (i.e., the map does not necessarily fix edges in S), then we obtain
A305168.
A305168
Number of non-isomorphic graphs on 4n vertices whose edges are the union of two n-edge matchings.
Original entry on oeis.org
1, 3, 9, 23, 54, 118, 246, 489, 940, 1751, 3177, 5630, 9776, 16659, 27922, 46092, 75039, 120615, 191611, 301086, 468342, 721638, 1102113, 1669226, 2508429, 3741741, 5542532, 8155720, 11925654, 17334077, 25051940, 36009468, 51491111, 73263043, 103744575
Offset: 0
To see a(2)=9, observe that all graphs that are the union of two matchings of size n=2 are isomorphic to the union of S = {{1,2},{3,4}} and one of T=
1. {{1,2}, {3,4}} --> (2',2')
2. {{1,3}, {2,4}} --> (4')
3. {{1,5}, {3,4}} --> (2,2')
4. {{1,3}, {4,5}} --> (4)
5. {{1,2}, {5,6}} --> (1,1,2')
6. {{1,3}, {5,6}} --> (3,1)
7. {{1,5}, {3,6}} --> (2,2)
8. {{1,5}, {6,7}} --> (2,1,1)
9. {{5,6}, {7,8}} --> (1,1,1,1)
Note that the partitions correspond to the bijection mentioned in the comments above.
-
b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*add(d*
(2-irem(d, 2)), d=numtheory[divisors](j)), j=1..n)/n)
end:
a:= n-> b(2*n):
seq(a(n), n=0..40); # Alois P. Heinz, Aug 18 2018
-
a[n_] := Sum[PartitionsP[2k] PartitionsP[n-k], {k, 0, n}];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 27 2020 *)
-
a(n) = sum(i=0, n, numbpart(2*i)*numbpart(n-i)); \\ Michel Marcus, Aug 18 2018
Comments