A336529 a(n) = (n^3+5*n+3)/3 + 2*floor(n/2) + a(n-2), with a(0)=1 and a(1)=3.
1, 3, 10, 20, 43, 75, 132, 208, 325, 475, 686, 948, 1295, 1715, 2248, 2880, 3657, 4563, 5650, 6900, 8371, 10043, 11980, 14160, 16653, 19435, 22582, 26068, 29975, 34275, 39056, 44288, 50065, 56355, 63258, 70740, 78907, 87723, 97300, 107600, 118741, 130683, 143550, 157300
Offset: 0
Examples
To see a(2)=10, let S = {{1,2},{3,4}}. Then a representative from each of the 10 equivalence classes are 1. {{1,2}, {3,4}} 2. {{1,3}, {2,4}} 3. {{1,5}, {3,4}} 4. {{1,3}, {4,5}} 5. {{1,2}, {5,6}} 6. {{1,3}, {5,6}} 7. {{1,5}, {2,6}} 8. {{1,5}, {3,6}} 9. {{1,5}, {6,7}} 10. {{5,6}, {7,8}} Likewise, in the 2 X 2 matrix interpretation, a representative from each of the a(2)=10 equivalence classes are [2 0 ; 0 2] [1 1 ; 1 1] [2 0 ; 0 1] [1 1 ; 1 0] [2 0 ; 0 0] [1 1 ; 0 0] [1 0 ; 1 0] [1 0 ; 0 1] [1 0 ; 0 0] [0 0 ; 0 0]
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..10000
- Yu Hin Au, Nathan Lindzey, and Levent Tunçel, Matchings, hypergraphs, association schemes, and semidefinite optimization, arXiv:2008.08628 [math.CO], 2020.
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-5,5,1,-3,1).
Crossrefs
Cf. A316587.
Programs
-
Mathematica
Nest[Append[#1, (#2^3 + 5 #2 + 3)/3 + 2*Floor[#2/2] + #1[[-2]] ] & @@ {#, Length@ #} &, {1, 3}, 42] (* Michael De Vlieger, Nov 04 2020 *) LinearRecurrence[{3,-1,-5,5,1,-3,1},{1,3,10,20,43,75,132},60] (* Harvey P. Dale, May 28 2021 *)
-
PARI
Vec((1 + 2*x^2 - 2*x^3 + 3*x^4) / ((1 - x)^5*(1 + x)^2) + O(x^40)) \\ Colin Barker, Nov 05 2020
Formula
a(n) = 3*a(n-1) - a(n-2) - 5*a(n-3) + 5*a(n-4) + a(n-5) - 3*a(n-6) + a(n-7). - Wesley Ivan Hurt, Nov 04 2020
G.f.: (1 + 2*x^2 - 2*x^3 + 3*x^4) / ((1 - x)^5*(1 + x)^2). - Colin Barker, Nov 05 2020
Comments