A336708
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} (-1)^(n-j) * binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 1, -1, 1, 1, 0, 0, 1, 1, 1, -1, 2, 1, 1, 2, 1, 0, -3, 1, 1, 3, 6, 1, 2, -1, 1, 1, 4, 14, 21, 1, 0, 11, 1, 1, 5, 25, 76, 80, 1, -5, -15, 1, 1, 6, 39, 182, 450, 322, 1, 0, -13, 1, 1, 7, 56, 355, 1447, 2818, 1347, 1, 14, 77, 1, 1, 8, 76, 611, 3532, 12175, 18352, 5798, 1, 0, -86
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
-1, 0, 1, 2, 3, 4, 5, ...
0, -1, 1, 6, 14, 25, 39, ...
2, 0, 1, 21, 76, 182, 355, ...
-3, 2, 1, 80, 450, 1447, 3532, ...
-1, 0, 1, 322, 2818, 12175, 37206, ...
-
T[0, k_] := 1; T[n_, k_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
-
{T(n, k) = if(n==0, 1, sum(j=1, n, (-1)^(n-j)*binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
-
{T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1+x*A)); polcoef(A, n)}
A336714
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} (-2)^(n-k) * binomial(n,k) * binomial(n+(n-1)*k,k-1) for n > 0.
Original entry on oeis.org
1, 1, 0, 2, 36, 766, 20910, 707472, 28740656, 1367040950, 74645106114, 4606416653654, 317237242964840, 24130334401571972, 2009783477119978508, 181958565624827141256, 17796032244661580019904, 1870078875109869688744870, 210155525478346375059816234, 25151873422906866362758095642
Offset: 0
-
a[0] = 1; a[n_] := Sum[(-2)^(n - k) * Binomial[n, k] * Binomial[n + (n - 1)*k, k - 1], {k, 1, n}] / n; Array[a, 20, 0] (* Amiram Eldar, Aug 01 2020 *)
-
{a(n) = if(n==0, 1, sum(k=1, n, (-2)^(n-k)*binomial(n, k)*binomial(n+(n-1)*k, k-1))/n)}
A336706
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 4, 1, 1, 4, 11, 14, 9, 1, 1, 5, 20, 45, 42, 21, 1, 1, 6, 32, 113, 197, 132, 51, 1, 1, 7, 47, 234, 688, 903, 429, 127, 1, 1, 8, 65, 424, 1854, 4404, 4279, 1430, 323, 1, 1, 9, 86, 699, 4159, 15490, 29219, 20793, 4862, 835
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
2, 5, 11, 20, 32, 47, 65, ...
4, 14, 45, 113, 234, 424, 699, ...
9, 42, 197, 688, 1854, 4159, 8192, ...
21, 132, 903, 4404, 15490, 43097, 101538, ...
-
T[0, k_] := 1; T[n_, k_] := Sum[Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
-
{T(n, k) = if(n==0, 1, sum(j=1, n, binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
-
{T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1-x*A)); polcoef(A, n)}
A336707
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} 2^(n-j) * binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 11, 20, 1, 1, 5, 19, 45, 72, 1, 1, 6, 30, 100, 197, 272, 1, 1, 7, 44, 201, 562, 903, 1064, 1, 1, 8, 61, 364, 1445, 3304, 4279, 4272, 1, 1, 9, 81, 605, 3249, 10900, 20071, 20793, 17504, 1, 1, 10, 104, 940, 6502, 30526, 85128, 124996, 103049, 72896
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, ...
6, 11, 19, 30, 44, 61, 81, ...
20, 45, 100, 201, 364, 605, 940, ...
72, 197, 562, 1445, 3249, 6502, 11857, ...
272, 903, 3304, 10900, 30526, 73723, 158034, ...
-
T[0, k_] := 1; T[n_, k_] := Sum[2^(n - j) * Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
-
{T(n, k) = if(n==0, 1, sum(j=1, n, 2^(n-j)*binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
-
{T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1-2*x*A)); polcoef(A, n)}
A336727
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} (-k)^(n-j) * binomial(n,j) * binomial(n,j-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -1, 1, 1, 1, -2, -1, 0, 1, 1, 1, -3, 1, 5, 2, 1, 1, 1, -4, 5, 10, -3, 0, 1, 1, 1, -5, 11, 9, -38, -21, -5, 1, 1, 1, -6, 19, -4, -103, 28, 51, 0, 1, 1, 1, -7, 29, -35, -174, 357, 289, 41, 14, 1, 1, 1, -8, 41, -90, -203, 1176, -131, -1262, -391, 0, 1
Offset: 0
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
1, -1, -1, 1, 5, 11, 19, ...
1, 0, 5, 10, 9, -4, -35, ...
1, 2, -3, -38, -103, -174, -203, ...
1, 0, -21, 28, 357, 1176, 2575, ...
-
T[0, k_] := 1; T[n_, k_] := Sum[If[k == 0, Boole[n == j],(-k)^(n - j)] * Binomial[n, j] * Binomial[n , j - 1], {j, 1, n}] / n; Table[T[k, n- k], {n, 0, 11}, {k, 0, n}] //Flatten (* Amiram Eldar, Aug 02 2020 *)
-
{T(n, k) = if(n==0, 1, sum(j=1, n, (-k)^(n-j)*binomial(n, j)*binomial(n, j-1))/n)}
-
{T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A/(1+k*x*A)); polcoef(A, n)}
-
{T(n, k) = sum(j=0, n, (-k)^j*(k+1)^(n-j)*binomial(n, j)*binomial(n+j, n)/(j+1))}
Showing 1-5 of 5 results.