A336709
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} (-2)^(n-j) * binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 1, -2, 1, 1, -1, 2, 1, 1, 0, -1, 4, 1, 1, 1, -1, 5, -24, 1, 1, 2, 2, 0, -3, 48, 1, 1, 3, 8, 5, 2, -21, 24, 1, 1, 4, 17, 36, 13, 0, 51, -464, 1, 1, 5, 29, 109, 177, 36, -5, 41, 1376, 1, 1, 6, 44, 240, 766, 922, 104, 0, -391, -704
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
-2, -1, 0, 1, 2, 3, 4, ...
2, -1, -1, 2, 8, 17, 29, ...
4, 5, 0, 5, 36, 109, 240, ...
-24, -3, 2, 13, 177, 766, 2177, ...
48, -21, 0, 36, 922, 5699, 20910, ...
-
T[0, k_] := 1; T[n_, k_] := Sum[(-2)^(n - j) * Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
-
{T(n, k) = if(n==0, 1, sum(j=1, n, (-2)^(n-j)*binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
-
{T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1+2*x*A)); polcoef(A, n)}
A336713
a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} (-1)^(n-k) * binomial(n,k) * binomial(n+(n-1)*k,k-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 6, 76, 1447, 37206, 1212194, 47975271, 2238595055, 120453255172, 7347494056729, 501273291296174, 37833413358907566, 3130557361463956074, 281854137496597897755, 27433898122963009937892, 2870816347095046227070383, 321430790732030793454519088
Offset: 0
-
a[0] = 1; a[n_] := Sum[(-1)^(n - k) * Binomial[n, k] * Binomial[n + (n - 1)*k, k - 1], {k, 1, n}] / n; Array[a, 19, 0] (* Amiram Eldar, Aug 01 2020 *)
-
{a(n) = if(n==0, 1, sum(k=1, n, (-1)^(n-k)*binomial(n, k)*binomial(n+(n-1)*k, k-1))/n)}
A336706
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 4, 1, 1, 4, 11, 14, 9, 1, 1, 5, 20, 45, 42, 21, 1, 1, 6, 32, 113, 197, 132, 51, 1, 1, 7, 47, 234, 688, 903, 429, 127, 1, 1, 8, 65, 424, 1854, 4404, 4279, 1430, 323, 1, 1, 9, 86, 699, 4159, 15490, 29219, 20793, 4862, 835
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
2, 5, 11, 20, 32, 47, 65, ...
4, 14, 45, 113, 234, 424, 699, ...
9, 42, 197, 688, 1854, 4159, 8192, ...
21, 132, 903, 4404, 15490, 43097, 101538, ...
-
T[0, k_] := 1; T[n_, k_] := Sum[Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
-
{T(n, k) = if(n==0, 1, sum(j=1, n, binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
-
{T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1-x*A)); polcoef(A, n)}
A336707
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} 2^(n-j) * binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 6, 1, 1, 4, 11, 20, 1, 1, 5, 19, 45, 72, 1, 1, 6, 30, 100, 197, 272, 1, 1, 7, 44, 201, 562, 903, 1064, 1, 1, 8, 61, 364, 1445, 3304, 4279, 4272, 1, 1, 9, 81, 605, 3249, 10900, 20071, 20793, 17504, 1, 1, 10, 104, 940, 6502, 30526, 85128, 124996, 103049, 72896
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 3, 4, 5, 6, 7, 8, ...
6, 11, 19, 30, 44, 61, 81, ...
20, 45, 100, 201, 364, 605, 940, ...
72, 197, 562, 1445, 3249, 6502, 11857, ...
272, 903, 3304, 10900, 30526, 73723, 158034, ...
-
T[0, k_] := 1; T[n_, k_] := Sum[2^(n - j) * Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
-
{T(n, k) = if(n==0, 1, sum(j=1, n, 2^(n-j)*binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
-
{T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1-2*x*A)); polcoef(A, n)}
A336727
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} (-k)^(n-j) * binomial(n,j) * binomial(n,j-1) for n > 0.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, -1, -1, 1, 1, 1, -2, -1, 0, 1, 1, 1, -3, 1, 5, 2, 1, 1, 1, -4, 5, 10, -3, 0, 1, 1, 1, -5, 11, 9, -38, -21, -5, 1, 1, 1, -6, 19, -4, -103, 28, 51, 0, 1, 1, 1, -7, 29, -35, -174, 357, 289, 41, 14, 1, 1, 1, -8, 41, -90, -203, 1176, -131, -1262, -391, 0, 1
Offset: 0
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 0, -1, -2, -3, -4, -5, ...
1, -1, -1, 1, 5, 11, 19, ...
1, 0, 5, 10, 9, -4, -35, ...
1, 2, -3, -38, -103, -174, -203, ...
1, 0, -21, 28, 357, 1176, 2575, ...
-
T[0, k_] := 1; T[n_, k_] := Sum[If[k == 0, Boole[n == j],(-k)^(n - j)] * Binomial[n, j] * Binomial[n , j - 1], {j, 1, n}] / n; Table[T[k, n- k], {n, 0, 11}, {k, 0, n}] //Flatten (* Amiram Eldar, Aug 02 2020 *)
-
{T(n, k) = if(n==0, 1, sum(j=1, n, (-k)^(n-j)*binomial(n, j)*binomial(n, j-1))/n)}
-
{T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A/(1+k*x*A)); polcoef(A, n)}
-
{T(n, k) = sum(j=0, n, (-k)^j*(k+1)^(n-j)*binomial(n, j)*binomial(n+j, n)/(j+1))}
Showing 1-5 of 5 results.