cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A336708 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where T(0,k) = 1 and T(n,k) = (1/n) * Sum_{j=1..n} (-1)^(n-j) * binomial(n,j) * binomial(n+(k-1)*j,j-1) for n > 0.

Original entry on oeis.org

1, 1, 1, 1, 1, -1, 1, 1, 0, 0, 1, 1, 1, -1, 2, 1, 1, 2, 1, 0, -3, 1, 1, 3, 6, 1, 2, -1, 1, 1, 4, 14, 21, 1, 0, 11, 1, 1, 5, 25, 76, 80, 1, -5, -15, 1, 1, 6, 39, 182, 450, 322, 1, 0, -13, 1, 1, 7, 56, 355, 1447, 2818, 1347, 1, 14, 77, 1, 1, 8, 76, 611, 3532, 12175, 18352, 5798, 1, 0, -86
Offset: 0

Views

Author

Seiichi Manyama, Aug 01 2020

Keywords

Examples

			Square array begins:
   1,  1, 1,   1,    1,     1,     1, ...
   1,  1, 1,   1,    1,     1,     1, ...
  -1,  0, 1,   2,    3,     4,     5, ...
   0, -1, 1,   6,   14,    25,    39, ...
   2,  0, 1,  21,   76,   182,   355, ...
  -3,  2, 1,  80,  450,  1447,  3532, ...
  -1,  0, 1, 322, 2818, 12175, 37206, ...
		

Crossrefs

Columns k=0-3 give: A007440, A090192, A000012, A106228.
Main diagonal gives A336713.

Programs

  • Mathematica
    T[0, k_] := 1; T[n_, k_] := Sum[(-1)^(n - j) * Binomial[n, j] * Binomial[n + (k - 1)*j, j - 1], {j, 1, n}] / n; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    {T(n, k) = if(n==0, 1, sum(j=1, n, (-1)^(n-j)*binomial(n, j)*binomial(n+(k-1)*j, j-1))/n)}
    
  • PARI
    {T(n, k) = local(A=1+x*O(x^n)); for(i=0, n, A=1+x*A^k/(1+x*A)); polcoef(A, n)}

Formula

G.f. A_k(x) of column k satisfies A_k(x) = 1 + x * A_k(x)^k / (1 + x * A_k(x)).

Extensions

Typo in name corrected by Georg Fischer, Sep 19 2023

A336714 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} (-2)^(n-k) * binomial(n,k) * binomial(n+(n-1)*k,k-1) for n > 0.

Original entry on oeis.org

1, 1, 0, 2, 36, 766, 20910, 707472, 28740656, 1367040950, 74645106114, 4606416653654, 317237242964840, 24130334401571972, 2009783477119978508, 181958565624827141256, 17796032244661580019904, 1870078875109869688744870, 210155525478346375059816234, 25151873422906866362758095642
Offset: 0

Views

Author

Seiichi Manyama, Aug 01 2020

Keywords

Crossrefs

Main diagonal of A336709.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(-2)^(n - k) * Binomial[n, k] * Binomial[n + (n - 1)*k, k - 1], {k, 1, n}] / n; Array[a, 20, 0] (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    {a(n) = if(n==0, 1, sum(k=1, n, (-2)^(n-k)*binomial(n, k)*binomial(n+(n-1)*k, k-1))/n)}

Formula

a(n) ~ exp(n - 1/2 - 2*exp(-1)) * n^(n - 5/2) / sqrt(2*Pi). - Vaclav Kotesovec, Aug 04 2025

A335871 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} binomial(n,k) * binomial(n+(n-1)*k,k-1) for n > 0.

Original entry on oeis.org

1, 1, 3, 20, 234, 4159, 101538, 3182454, 122285201, 5575750271, 294529785168, 17697480642005, 1192398100081202, 89053864927236146, 7302988011333915878, 652439391227186881683, 63077327237347821501754, 6561701255914880362990927, 730833849063629052249986940
Offset: 0

Views

Author

Seiichi Manyama, Aug 01 2020

Keywords

Crossrefs

Main diagonal of A336706.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[Binomial[n, k] * Binomial[n + (n - 1)*k, k - 1], {k, 1, n}] / n; Array[a, 19, 0] (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    {a(n) = if(n==0, 1, sum(k=1, n, binomial(n, k)*binomial(n+(n-1)*k, k-1))/n)}

A336712 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} 2^(n-k) * binomial(n,k) * binomial(n+(n-1)*k,k-1) for n > 0.

Original entry on oeis.org

1, 1, 4, 30, 364, 6502, 158034, 4921112, 187897728, 8519286854, 447829041358, 26796275824186, 1798936842255128, 133933302810144684, 10953460639289615412, 976226180855018504472, 94181146038753255120480, 9778885058353578446996934, 1087326670244362420301889926
Offset: 0

Views

Author

Seiichi Manyama, Aug 01 2020

Keywords

Crossrefs

Main diagonal of A336707.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[2^(n - k) * Binomial[n, k] * Binomial[n + (n - 1)*k, k - 1], {k, 1, n}] / n; Array[a, 19, 0] (* Amiram Eldar, Aug 01 2020 *)
  • PARI
    {a(n) = if(n==0, 1, sum(k=1, n, 2^(n-k)*binomial(n, k)*binomial(n+(n-1)*k, k-1))/n)}

A336728 a(0) = 1 and a(n) = (1/n) * Sum_{k=1..n} (-n)^(n-k) * binomial(n,k) * binomial(n,k-1) for n > 0.

Original entry on oeis.org

1, 1, -1, 1, 9, -174, 2575, -38219, 588833, -9274418, 141253551, -1739881142, -753419447, 1379742127908, -83720072007585, 4059017293956301, -184613801568558975, 8254420480122200214, -369177108304219471457, 16608406418618863804990, -750673988803431836351799
Offset: 0

Views

Author

Seiichi Manyama, Aug 02 2020

Keywords

Crossrefs

Main diagonal of A336727.

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(-n)^(n - k) * Binomial[n, k] * Binomial[n , k - 1], {k, 1, n}] / n; Array[a, 21, 0] (* Amiram Eldar, Aug 02 2020 *)
  • PARI
    {a(n) = if(n==0, 1, sum(k=1, n, (-n)^(n-k)*binomial(n, k)*binomial(n, k-1))/n)}
    
  • PARI
    {a(n) = sum(k=0, n, (-n)^k*(n+1)^(n-k)*binomial(n, k)*binomial(n+k, n)/(k+1))}

Formula

a(n) = Sum_{k=0..n} (-n)^k * (n+1)^(n-k) * binomial(n,k) * binomial(n+k,n)/(k+1).
Showing 1-5 of 5 results.