A110147
10^((n^2-n)/2).
Original entry on oeis.org
1, 1, 10, 1000, 1000000, 10000000000, 1000000000000000, 1000000000000000000000, 10000000000000000000000000000, 1000000000000000000000000000000000000
Offset: 0
A173998
For n>=1, a(n) = n + 2 + Sum_{i=1..n-1} a(i)*a(n-i).
Original entry on oeis.org
3, 13, 83, 673, 6203, 61613, 642683, 6940673, 76930803, 870136013, 10002590883, 116521027873, 1372486213803, 16318813519213, 195599588228683, 2360929398934273, 28671940652447203, 350089944825571213, 4295280755452388083, 52926654021145267873
Offset: 1
-
aa=ConstantArray[0,20];aa[[1]]=3;Do[aa[[n]]=n+2+Sum[aa[[i]]*aa[[n-i]],{i,1,n-1}],{n,2,20}];aa (* Vaclav Kotesovec, Oct 20 2012 *)
-
my(x='x+O('x^30)); Vec(1/2 + sqrt(9*x^2 - 14*x + 1)/(2*(x - 1))) \\ Michel Marcus, Mar 05 2025
-
from sympy import series, sqrt, Symbol, Poly
x = Symbol("x")
p = Poly(series((1 + sqrt(9*x**2 - 14*x + 1)/(x - 1))/2, n=20).removeO(), x)
print([p.coeff_monomial(x**n) for n in range(1, p.degree())]) # Ehren Metcalfe, Mar 03 2025
Showing 1-2 of 2 results.
Comments