cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A110147 10^((n^2-n)/2).

Original entry on oeis.org

1, 1, 10, 1000, 1000000, 10000000000, 1000000000000000, 1000000000000000000000, 10000000000000000000000000000, 1000000000000000000000000000000000000
Offset: 0

Views

Author

Philippe Deléham, Sep 04 2005

Keywords

Comments

Sequence given by the Hankel transform (see A001906 for definition) of A082148 = {1, 1, 11, 131, 1661, 22101, 305151, 4335711, ...}; example: det([1, 1, 11, 131; 1, 11, 131, 1661; 11, 131, 1661, 22101; 131, 1661, 22101, 305151]) = 10^6 = 1000000.
Also the Hankel transform of A379103. - Nathaniel Johnston, Dec 16 2024

Crossrefs

Programs

Formula

a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(10i, j).
a(n)=10a(n-1)^2/a(n-2), a(0)=a(1)=1. - Michael Somos, Sep 12 2005

A173998 For n>=1, a(n) = n + 2 + Sum_{i=1..n-1} a(i)*a(n-i).

Original entry on oeis.org

3, 13, 83, 673, 6203, 61613, 642683, 6940673, 76930803, 870136013, 10002590883, 116521027873, 1372486213803, 16318813519213, 195599588228683, 2360929398934273, 28671940652447203, 350089944825571213, 4295280755452388083, 52926654021145267873
Offset: 1

Views

Author

Vladimir Shevelev, Mar 05 2010

Keywords

Comments

Using induction, it is easy to prove that a(n)==3 (mod 10).
The largest prime factors of these terms are large (they start 3, 13, 83, 673, 6203, 61613, 642683, 161411, 9221, 870136013, 751453, 4016443, 6267060337, 16318813519213,..)

Crossrefs

Programs

  • Mathematica
    aa=ConstantArray[0,20];aa[[1]]=3;Do[aa[[n]]=n+2+Sum[aa[[i]]*aa[[n-i]],{i,1,n-1}],{n,2,20}];aa (* Vaclav Kotesovec, Oct 20 2012 *)
  • PARI
    my(x='x+O('x^30)); Vec(1/2 + sqrt(9*x^2 - 14*x + 1)/(2*(x - 1))) \\ Michel Marcus, Mar 05 2025
  • Python
    from sympy import series, sqrt, Symbol, Poly
    x = Symbol("x")
    p = Poly(series((1 + sqrt(9*x**2 - 14*x + 1)/(x - 1))/2, n=20).removeO(), x)
    print([p.coeff_monomial(x**n) for n in range(1, p.degree())]) # Ehren Metcalfe, Mar 03 2025
    

Formula

Recurrence: n*a(n) = 3*(5*n-7)*a(n-1) - (23*n-48)*a(n-2) + 9*(n-3)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ sqrt(13*sqrt(10)-40)*(7+2*sqrt(10))^n/(4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
From Ehren Metcalfe, Mar 02 2025: (Start)
G.f.: 1/2 + sqrt(9*x^2 - 14*x + 1)/(2*(x - 1)).
a(n) = (1/2)*Sum_{j=0..n} (-1)^(j+1)*Sum_{k=0..j} binomial(1/2,k)*binomial(1/2, j-k)*(7 + 2*sqrt(10))^k*(7 - 2*sqrt(10))^(j-k) = 1 + 2*Sum_{j=0..n} A379103(j), for n>=1. (End)
Showing 1-2 of 2 results.