A333090
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of S(x)^n evaluated at x = 1, where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. of the Schröder numbers A006318.
Original entry on oeis.org
1, 3, 21, 183, 1729, 17003, 171237, 1752047, 18130433, 189218451, 1987916021, 20996253479, 222730436161, 2371369720827, 25325636818629, 271189884041183, 2910628489408513, 31302328583021091, 337241582882175189, 3639109029230457751, 39324814984207649729
Offset: 0
n-th order Taylor polynomial of S(x)^n:
n = 0: S(x)^0 = 1 + O(x)
n = 1: S(x)^1 = 1 + 2*x + O(x^2)
n = 2: S(x)^2 = 1 + 4*x + 16*x^2 + O(x^3)
n = 3: S(x)^3 = 1 + 6*x + 30*x^2 + 146*x^3 + O(x^4)
n = 4: S(x)^4 = 1 + 8*x + 48*x^2 + 264*x^3 + 1408*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 2 = 3, a(2) = 1 + 4 + 16 = 21, a(3) = 1 + 6 + 30 + 146 = 183 and a(4) = 1 + 8 + 48 + 264 + 1408 = 1729.
The triangle of coefficients of the n-th order Taylor polynomial of S(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 2 1 3
n = 2 | 16 4 1 21
n = 3 | 146 30 6 1 183
n = 4 | 1408 264 48 8 1 1729
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence is [x^n]S(x)^n = A103885(n).
Examples of supercongruences:
a(13) - a(1) = 2371369720827 - 3 = (2^3)*(3^2)*(13^3)*83*180617 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 425495386400395896971 - 183 = (2^2)*(7^3*)*19*47* 347287606554703 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 5894174066435445232142003 - 17003 = (2^3)*(3^4)*(5^6)*17* 41*101*5081*1627513421 == 0 ( mod 5^6 ).
-
S:= x -> (1/2)*(1-x-sqrt(1-6*x+x^2))/x:
G := (x,n) -> series(S(x)^n, x, 51):
seq(add(coeff(G(x, n), x, k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x)*(1 - Sqrt[1 - 4*x - 4*x^2])/(2*x))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
A333093
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of c(x)^n evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
Original entry on oeis.org
1, 2, 8, 41, 232, 1377, 8399, 52138, 327656, 2077934, 13270633, 85226594, 549837391, 3560702069, 23132584742, 150695482041, 984021596136, 6438849555963, 42208999230224, 277144740254566, 1822379123910857, 11998811140766701, 79095365076843134
Offset: 0
n-th order Taylor polynomial of c(x)^n:
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^1 = 1 + x + O(x^2)
n = 2: c(x)^2 = 1 + 2*x + 5*x^2 + O(x^3)
n = 3: c(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + O(x^4)
n = 4: c(x)^4 = 1 + 4*x + 14*x^2 + 48*x^3 + 165*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 1 = 2, a(2) = 1 + 2 + 5 = 8, a(3) = 1 + 3 + 9 + 28 = 41 and a(4) = 1 + 4 + 14 + 48 + 165 = 232.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 1 1 2
n = 2 | 5 2 1 8
n = 3 | 28 9 3 1 41
n = 4 | 165 48 14 4 1 232
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence [1, 1, 5, 28, 165, ...] = [x^n] c(x)^n = A025174(n).
Examples of supercongruences:
a(13) - a(1) = 3560702069 - 2 = (3^2)*(13^3)*31*37*157 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 11998811140766701 - 41 = (2^2)*5*(7^4)*32213*7756841 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 22794614296746579502 - 1377 = (5^6)*7*53*6491*605796421 == 0 ( mod 5^6 ).
-
seq(add(n/(n+k)*binomial(n+2*k-1,k), k = 0..n), n = 1..25);
#alternative program
c:= x -> (1/2)*(1-sqrt(1-4*x))/x:
G := (x,n) -> series(c(x)^n, x, 51):
seq(add(coeff(G(x, n), x, k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x)^2 * (1 - Sqrt[(1 - 3*x)/(1 + x)]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 28 2020 *)
A182959
Expansion of o.g.f. 2*(1+x)^2/(1-2*x+sqrt(1-8*x)).
Original entry on oeis.org
1, 5, 20, 96, 528, 3136, 19584, 126720, 841984, 5710848, 39376896, 275185664, 1944821760, 13875707904, 99807723520, 722997411840, 5269761884160, 38620004352000, 284405842575360, 2103530005463040, 15619068033761280
Offset: 0
G.f.: A(x) = 1 + 5*x + 20*x^2 + 96*x^3 + 528*x^4 + 3136*x^5 +...
where A(x*F(x)^3) = F(x) is the g.f. of A182960:
F(x) = 1 + 5*x + 95*x^2 + 2496*x^3 + 76063*x^4 + 2524161*x^5 +...
-
CoefficientList[ Series[2 (1 + x)^2/(1 - 2 x + Sqrt[1 - 8 x]), {x, 0, 20}], x] (* Robert G. Wilson v, Dec 31 2010 *)
-
{a(n)=polcoeff(2*(1+x)^2/(1-2*x+sqrt(1-8*x+x*O(x^n))),n)}
A372214
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of G(x)^n evaluated at x = 1, where G(x) = (1 - 2*x - sqrt(1 - 8*x + 4*x^2))/(2*x).
Original entry on oeis.org
1, 4, 40, 487, 6376, 86629, 1203823, 16984678, 242274280, 3484593028, 50444222665, 734066291974, 10728052396111, 157349171819155, 2314894133906086, 34145661019248487, 504810905195542504, 7478066502444399439, 110972913533524676080, 1649407167353221551706, 24549982881130265421001
Offset: 0
n-th order Taylor polynomial of G(x)^n:
n = 0: G(x)^0 = 1 + O(x)
n = 1: G(x)^1 = 1 + 3*x + O(x^2)
n = 2: G(x)^2 = 1 + 6*x + 33*x^2 + O(x^3)
n = 3: G(x)^3 = 1 + 9*x + 63*x^2 + 414*x^3 + O(x^4)
n = 4: G(x)^4 = 1 + 12*x + 102*x^2 + 768*x^3 + 5493*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 3 = 4, a(2) = 1 + 6 + 33 = 40, a(3) = 1 + 9 + 63 + 414 = 487 and a(4) = 1 + 12 + 102 + 768 + 5493 = 6376.
The triangle of coefficients of the n-th order Taylor polynomial of G(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 3 1 4
n = 2 | 33 6 1 40
n = 3 | 414 63 9 1 487
n = 4 | 5493 768 102 12 1 6376
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 157349171819155 - 4 = (3^3)*(13^3)*269*9860941 == 0 (mod 13^3).
a(2*7) - a(2) = 2314894133906086 - 40 = 2*(3^4)*(7^3)*11*12119*312509 == 0 (mod 7^3).
-
G := x -> (1/2)*(1 - 2*x - sqrt(1 - 8*x + 4*x^2))/x:
H := (x, n) -> series(G(x)^n, x, 41):
seq(add(coeff(H(x, n), x, k), k = 0..n), n = 0..20);
-
Table[SeriesCoefficient[(2*(1 + x)^2/(1 - x + Sqrt[1 - 6*x - 3*x^2]))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 02 2024 *)
-
G(x) = (1 - 2*x - sqrt(1 - 8*x + 4*x^2))/(2*x);
a(n) = my(x='x+O('x^(n+2))); subst(Pol(Vec(G(x)^n)), 'x, 1); \\ Michel Marcus, May 07 2024
Showing 1-4 of 4 results.
Comments