cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A182960 G.f.: exp( Sum_{n>=1} C(6n-1,2n-1)*x^n/n ).

Original entry on oeis.org

1, 5, 95, 2496, 76063, 2524161, 88534548, 3228482908, 121171012431, 4649906785719, 181614908182551, 7196014051078368, 288537887780406468, 11686156771344086156, 477379538839242423528, 19645977861506470428324
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2010

Keywords

Comments

The logarithmic derivative of this sequence is a bisection of the logarithmic derivative of A001764 (ternary trees).
To see this, compare the g.f. of this sequence with g.f. of A001764:
exp(Sum_{n>=1} C(3n-1,n-1)*x^n/n) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 +...

Examples

			G.f.: A(x) = 1 + 5*x + 95*x^2 + 2496*x^3 + 76063*x^4 + 2524161*x^5 +...
log(A(x)) = 5*x + 165*x^2 + 6188*x^3 + 245157*x^4 + 10015005*x^5 +...+ A025174(2n)*x^n/n +...
G.f. satisfies: A(x) = G(x*A(x)^3) where G(x) begins:
G(x) = 1 + 5*x + 20*x^2 + 96*x^3 + 528*x^4 + 3136*x^5 + 19584*x^6 +...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Exp[ Sum[ Binomial[6 i - 1, 2 i - 1]*x^i/i, {i, n}]]; CoefficientList[ Series[f@ 15, {x, 0, 15}], x]  (* Robert G. Wilson v, Dec 31 2010 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,binomial(6*m-1,2*m-1)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=polcoeff((serreverse(x*(1-2*x+sqrt(1-8*x+x*O(x^n)))^3/(8*(1+x)^6))/x)^(1/3),n)}

Formula

G.f. A(x) satisfies: A(x^2) = F(x)*F(-x) where F(x) = 1 + x*F(x)^3 = Sum_{n>=0} C(3n,n)*x^n/(2n+1) is the g.f. of A001764.
Let G(x) = 2*(1+x)^2/(1-2*x+sqrt(1-8*x)), then g.f. A(x) satisfies:
* A(x) = G(x*A(x)^3) and A(x/G(x)^3) = G(x);
* A(x) = [Series_Reversion( x/G(x)^3 ) / x]^(1/3).
The sequence defined by b(n) := [x^n] A(x)^n begins [1, 5, 215, 10463, 537287, 28435880, 1534398353, 83920389642, ...] and conjecturally satisfies the congruence b(p) == b(1) (mod p^3) for prime p >= 5 (checked up to p = 101). - Peter Bala, Sep 14 2021
From Vaclav Kotesovec, Sep 16 2021: (Start)
Recurrence: 16*n*(2*n + 1)*(4*n - 1)*(4*n + 1)*(27*n - 31)*a(n) = 18*(69984*n^5 - 220320*n^4 + 267705*n^3 - 156510*n^2 + 42021*n - 3680)*a(n-1) - 59049*(n-1)*(2*n - 3)*(3*n - 5)*(3*n - 4)*(27*n - 4)*a(n-2).
a(n) ~ sqrt((sqrt(2) - 1)^(2/3) + (sqrt(2) + 1)^(2/3) - 2) * 3^(6*n + 3/2) / (sqrt(Pi) * n^(3/2) * 2^(4*n + 7/2)). (End)

A167422 Expansion of (1+x)*c(x), c(x) the g.f. of A000108.

Original entry on oeis.org

1, 2, 3, 7, 19, 56, 174, 561, 1859, 6292, 21658, 75582, 266798, 950912, 3417340, 12369285, 45052515, 165002460, 607283490, 2244901890, 8331383610, 31030387440, 115948830660, 434542177290, 1632963760974, 6151850548776
Offset: 0

Views

Author

Paul Barry, Nov 03 2009

Keywords

Comments

Hankel transform is A167423.
Apparently a(n) = A071716(n) if n>1. - R. J. Mathar, Nov 12 2009

Crossrefs

Programs

  • Maple
    A167422List := proc(m) local A, P, n; A := [1, 2]; P := [1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), A[-1]]);
    A := [op(A), P[-1]] od; A end: A167422List(26); # Peter Luschny, Mar 24 2022
  • Mathematica
    Table[If[n < 2, n + 1, Binomial[2 n, n]/(n + 1) + Binomial[2 (n - 1), n - 1]/n], {n, 0, 25}] (* Michael De Vlieger, Oct 05 2015 *)
    CoefficientList[Series[(1 + t)*(1 - Sqrt[1 - 4*t])/(2*t), {t, 0, 50}], t] (* G. C. Greubel, Jun 12 2016 *)
  • PARI
    a(n) = if (n<2, n+1, binomial(2*n, n)/(n+1) + binomial(2*(n-1), n-1)/n);
    vector(50, n, a(n-1)) \\ Altug Alkan, Oct 04 2015

Formula

a(n) = Sum_{k=0..n} A000108(k)*C(1,n-k).
a(0)= 1, a(n) = A005807(n-1) for n>0. - Philippe Deléham, Nov 25 2009
(n+1)*a(n) +(-3*n+1)*a(n-1) +2*(-2*n+5)*a(n-2)=0, for n>2. - R. J. Mathar, Feb 10 2015
-(n+1)*(5*n-6)*a(n) +2*(5*n-1)*(2*n-3)*a(n-1)=0. - R. J. Mathar, Feb 10 2015
The o.g.f. A(x) satisfies [x^n] A(x)^(5*n) = binomial(5*n,2*n) = A001450(n). Cf. A182959. - Peter Bala, Oct 04 2015

A372215 a(n) is equal to the n-th order Taylor polynomial (centered at 0) of G(x)^n evaluated at x = 1, where G(x) = (1 - 3*x - sqrt(1 - 10*x + 9*x^2))/(2*x) is the g.f. of A082298.

Original entry on oeis.org

1, 5, 65, 1013, 16897, 292005, 5157569, 92456341, 1675300865, 30604622405, 562675808065, 10398428960309, 192983418877441, 3594314403564773, 67146652988725697, 1257656071818605013, 23609209650223284225, 444081728926392461445, 8367715805572617168449
Offset: 0

Views

Author

Peter Bala, Apr 23 2024

Keywords

Comments

The sequence satisfies the Gauss congruences: a(n*p^k) == a(n*p^(k-1)) ( mod p^k ) for all primes p and positive integers n and k.
We conjecture that the sequence satisfies the stronger supercongruences a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for all primes p >= 5 and positive integers n and k. Examples of these supercongruences are given below.
More generally, for each integer m, we conjecture that the sequence {a_m(n) : n >= 0}, defined by setting a_m(n) = the n-th order Taylor polynomial of G(x)^(m*n) evaluated at x = 1, satisfies the same supercongruences.

Examples

			n-th order Taylor polynomial of G(x)^n:
  n = 0: G(x)^0 = 1 + O(x)
  n = 1: G(x)^1 = 1 + 4*x + O(x^2)
  n = 2: G(x)^2 = 1 + 8*x + 56*x^2 + O(x^3)
  n = 3: G(x)^3 = 1 + 12*x + 108*x^2 + 892 *x^3 + O(x^4)
  n = 4: G(x)^4 = 1 + 16*x + 176*x^2 + 1680*x^3 + 15024*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 4 = 5, a(2) = 1 + 8 + 56 = 65, a(3) = 1 + 12 +  108 + 892 = 1013 and a(4) = 1 + 16 + 176 + 1680 + 15024 = 16897.
The triangle of coefficients of the n-th order Taylor polynomial of G(x)^n, n >= 0, in descending powers of x begins
                                            row sums
  n = 0 |     1                                 1
  n = 1 |     4      1                          5
  n = 2 |    56      8     1                   65
  n = 3 |   892    108    12    1            1013
  n = 4 | 15024   1680   176   16   1       16897
   ...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 3594314403564773 - 5 = (2^5)*(3^3)*(13^3)*29*7643*8543 == 0 (mod 13^3).
a(2*7) - a(2) = 67146652988725697 - 65 = (2^7)*3*(7^4)*23*3943*803057 = 0 (mod 7^4).
		

Crossrefs

Programs

  • Maple
    G := x -> (1/2)*(1 - 3*x - sqrt(1 - 10*x + 9*x^2))/x:
    H := (x, n) -> series(G(x)^n, x, 21):
    seq(add(coeff(H(x, n), x, k), k = 0..n), n = 0..20);
  • Mathematica
    Table[SeriesCoefficient[(2*(1 + x)^2/(1 - 2*x + Sqrt[1 - 8*x]))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 02 2024 *)
  • PARI
    G(x) = (1 - 3*x - sqrt(1 - 10*x + 9*x^2))/(2*x);
    a(n) = my(x='x+O('x^(n+2))); subst(Pol(Vec(G(x)^n)), 'x, 1); \\ Michel Marcus, May 07 2024

Formula

a(n) = [x^n] ( (1 + x)*G(x/(1 + x)) )^n.
O.g.f.: ( 1 + x*F'(x)/F(x) )/( 1 - x*F(x) ), where F(x) = (1/x)*Revert( x/G(x) ) = = 1 + 4*x + 36*x^2 + 420*x^3 + 5572*x^4 + ....
Row sums of the Riordan array ( 1 + x*F'(x)/F(x), x*F(x) ) belonging to the Hitting time subgroup of the Riordan group.
a(n) ~ 3^(3*n/2 + 3/4) * (1 + sqrt(3))^(2*n-1) / (sqrt(Pi*n) * 2^(n+1)). - Vaclav Kotesovec, May 02 2024
a(n) = [x^n] H(x)^n, where H(x) = 2*(1 + x)^2/(1 - 2*x + sqrt(1 - 8*x)), the g.f. of A182959, satisfies [x^(n)] H(x)^(3*n) = binomial(6*n, 2*n). - Peter Bala, Nov 07 2024

A259613 a(n) = binomial(6*n,2*n)/3, n>0, a(0)=1.

Original entry on oeis.org

1, 5, 165, 6188, 245157, 10015005, 417225900, 17620076360, 751616304549, 32308782859535, 1397281501935165, 60727722660586800, 2650087220696342700, 116043807643289338428, 5096278545356362962504, 224377658168860057076688
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 30 2015

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [Binomial(6*n,2*n)/3: n in [1..20]]; // Vincenzo Librandi, Jul 01 2015
  • Mathematica
    Join[{1}, Table[Binomial[6 n, 2 n]/3, {n, 30}]] (* Vincenzo Librandi, Jul 01 2015 *)
  • PARI
    vector(20,n, n--; if (n==0, 1, binomial(6*n,2*n)/3)) \\ Michel Marcus, Jul 01 2015
    

Formula

G.f.: A(x) = 1 + (x*B(x)')/(B(x)) where B(x) = 2 * (1 + x*B(x)^2)^2 / (1 - 2*x*B(x)^2 + sqrt(1-8*x*B(x)^2)).
a(n) ~ 3^(6*n-1/2) / (sqrt(Pi*n) * 2^(4*n+3/2)). - Vaclav Kotesovec, Jul 01 2015
a(n) = A025174(2*n), n>0. - R. J. Mathar, Jun 07 2016
From Peter Bala, Jun 08 2024: (Start)
a(n) = (9/2)*(6*n-1)*(6*n-5)*(3*n-1)*(3*n-2)/((4*n-1)*(4*n-3)*(2*n-1)*n) * a(n-1) with a(0) = 1 and a(1) = 5.
Right-hand side of the identity (1/3)*Sum_{k = 0..2*n} (-1)^k*binomial(-n, k)* binomial(5*n-k, 2*n-k) = (1/3)*binomial(6*n, 2*n). Compare with the identity Sum_{k = 0..n} (-1)^k*binomial(n, k)*binomial(5*n-k, 2*n-k) = binomial(4*n, 2*n). (End)
From Karol A. Penson, Jan 26 2025: (Start)
G.f. for 3*a(n),a(0)=1, denoted A, expressible entirely by radicals: A = A1 + A2 with
A1 = ((4*sqrt(4 - 27*sqrt(z)) + 12*i*sqrt(3)*z^(1/4))^(1/3) + (4*sqrt(4 - 27*sqrt(z)) - 12*i*sqrt(3)*z^(1/4))^(1/3))/(4*sqrt(4 - 27*sqrt(z))), and
A2 = (1/(4*sqrt(4 + 27*sqrt(z)) + 12*sqrt(3)*z^(1/4))^(1/3) + 1/(4*sqrt(4 + 27*sqrt(z)) - 12*sqrt(3)*z^(1/4))^(1/3))/sqrt(4 + 27*sqrt(z)),
where i = sqrt(-1), the imaginary unit. (End)
Showing 1-4 of 4 results.