cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A182959 Expansion of o.g.f. 2*(1+x)^2/(1-2*x+sqrt(1-8*x)).

Original entry on oeis.org

1, 5, 20, 96, 528, 3136, 19584, 126720, 841984, 5710848, 39376896, 275185664, 1944821760, 13875707904, 99807723520, 722997411840, 5269761884160, 38620004352000, 284405842575360, 2103530005463040, 15619068033761280
Offset: 0

Views

Author

Paul D. Hanna, Dec 31 2010

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 20*x^2 + 96*x^3 + 528*x^4 + 3136*x^5 +...
where A(x*F(x)^3) = F(x) is the g.f. of A182960:
F(x) = 1 + 5*x + 95*x^2 + 2496*x^3 + 76063*x^4 + 2524161*x^5 +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[ Series[2 (1 + x)^2/(1 - 2 x + Sqrt[1 - 8 x]), {x, 0, 20}], x]  (* Robert G. Wilson v, Dec 31 2010 *)
  • PARI
    {a(n)=polcoeff(2*(1+x)^2/(1-2*x+sqrt(1-8*x+x*O(x^n))),n)}

Formula

Let F(x) be the g.f. of A182960, then g.f. of this sequence satisfies:
* A(x) = F(x/A(x)^3) and A(x*F(x)^3) = F(x);
* A(x) = [x/Series_Reversion( x*F(x)^3 )]^(1/3).
G.f.: 1/2/x - 1/2 - x - (1+x)/x/G(0), where G(k)= 1 + 1/(1 - 4*x*(2*k+1)/(4*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
a(n) ~ 9*2^(3*n-2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Jun 29 2013
From Peter Bala, Oct 04 2015: (Start)
O.g.f. A(x) = (1 + x)*(2*C(2*x) - 1), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108.
[x^n] A(x)^(3*n) = binomial(6*n,2*n). Cf. with the identity [x^n] ( (1 + x)*C(x) )^(5*n) = binomial(5*n,2*n) = A001450(n). (End)
Conjecture: D-finite with recurrence (n+1)*a(n) +(-7*n+3)*a(n-1) +4*(-2*n+5)*a(n-2)=0. - R. J. Mathar, Jan 22 2020
From Peter Bala, May 15 2023: (Start)
a(n) = 3*(2^n)*(3*n - 1)/(n*(n + 1)) * binomial(2*n-2,n-1) for n >= 2.
(n + 1)*(3*n - 4)*a(n) = 4*(2*n - 3)*(3*n - 1)*a(n-1) for n >= 3 with a(2) = 20. Mathar's conjectured second order recurrence above follows from this. (End)
[x^n] A(x)^n = A372215(n). - Peter Bala, Nov 07 2024

A381787 G.f. A(x) satisfies A(x) = (1 + x) * C(x*A(x)), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 2, 5, 22, 112, 623, 3664, 22405, 141002, 907228, 5940663, 39459873, 265228359, 1800608563, 12328843910, 85040632504, 590371016188, 4121775003434, 28921911896836, 203854515625194, 1442669458817907, 10247020573880520, 73024240955785936, 521973882076798493
Offset: 0

Views

Author

Seiichi Manyama, Mar 07 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*k+1, k)*binomial(k+1, n-k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(3*k+1,k) * binomial(k+1,n-k)/(3*k+1).

A167423 Hankel transform of a simple Catalan convolution.

Original entry on oeis.org

1, -1, -11, -50, -186, -631, -2029, -6299, -19075, -56704, -166164, -481391, -1381691, -3935125, -11134331, -31328366, -87721614, -244588519, -679429225, -1881102959, -5192705779, -14296088956, -39263958696, -107601905375, -294291714551, -803416991401
Offset: 0

Views

Author

Paul Barry, Nov 03 2009

Keywords

Comments

Hankel transform of A167422.

Crossrefs

Programs

  • Magma
    [Fibonacci(2*n)*(1-3*n)/2 + Lucas(2*n)*(1-n)/2: n in [0..30]]; // Vincenzo Librandi, Jun 13 2016
  • Mathematica
    Table[((1-3n) Fibonacci[2n] + (1-n) LucasL[2n])/2, {n, 0, 20}] (* Vladimir Reshetnikov, Oct 28 2015 *)
    LinearRecurrence[{6, -11, 6, -1}, {1, -1, -11, -50}, 50] (* G. C. Greubel, Jun 12 2016 *)
  • PARI
    Vec((1-7*x+6*x^2-x^3)/(1-6*x+11*x^2-6*x^3+x^4) + O(x^100)) \\ Altug Alkan, Oct 29 2015
    

Formula

G.f.: ( 1-7*x+6*x^2-x^3 ) / (x^2-3*x+1)^2 .
a(n) = F(2*n)*(1-3*n)/2 + L(2*n)*(1-n)/2. - Paul Barry, Feb 22 2010
a(n) = 3*A001871(n-1) - 2*A001871(n) + F(2*n+4). - Ralf Stephan, May 21 2014
a(n) = 1 - Sum_{k=1..n} k*F(2*k+1), where F(n) = A000045(n). - Vladimir Reshetnikov, Oct 28 2015

A259550 a(n) = C(5*n-1,2*n)/3, n > 0, a(0) = 1.

Original entry on oeis.org

1, 2, 42, 1001, 25194, 653752, 17298645, 463991880, 12570420330, 343176898988, 9425842448792, 260170725132045, 7210477496434485, 200519284375732896, 5592628786362932776, 156375886125188595376, 4382048530314336892010, 123033460966787345446836
Offset: 0

Views

Author

Vladimir Kruchinin, Jun 30 2015

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [Binomial(5*n-1, 2*n)/3: n in [1..20]]; // Vincenzo Librandi, Jul 01 2015
  • Mathematica
    Join[{1}, Table[Binomial[5 n - 1, 2 n]/3, {n, 30}]] (* Vincenzo Librandi, Jul 01 2015 *)
  • Maxima
    makelist(if n=0 then 1 else binomial(5*n-1,2*n)/3,n,0,20);
    
  • PARI
    vector(20, n, n--; if (n==0, 1, binomial(5*n-1,2*n)/3)) \\ Michel Marcus, Jul 01 2015
    

Formula

G.f.: A(x) = 1 + (x*B(x)')/(B(x)), B(x) = (1 + x*B(x)^5)*C(x*B(x)^5) is g.f. of A060941, C(x) is g.f. of Catalan numbers.
a(n) = n*Sum_{i = 0..n}((C(5*n,i)*C(7*n-2*i-1,n-i))/(6*n-i)), n > 1, a(0) = 1.
a(n) = 1/5*A001450(n) for n >= 1. exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 2*x + 23*x^2 + 377*x^3 + ... is the o.g.f. for the sequence of Duchon numbers A060941. - Peter Bala, Oct 05 2015
D-finite with recurrence 6*n*(3*n-1)*(2*n-1)*(3*n-2)*a(n) -5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1)=0. - R. J. Mathar, Nov 22 2024
Showing 1-4 of 4 results.