A333093
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of c(x)^n evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
Original entry on oeis.org
1, 2, 8, 41, 232, 1377, 8399, 52138, 327656, 2077934, 13270633, 85226594, 549837391, 3560702069, 23132584742, 150695482041, 984021596136, 6438849555963, 42208999230224, 277144740254566, 1822379123910857, 11998811140766701, 79095365076843134
Offset: 0
n-th order Taylor polynomial of c(x)^n:
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^1 = 1 + x + O(x^2)
n = 2: c(x)^2 = 1 + 2*x + 5*x^2 + O(x^3)
n = 3: c(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + O(x^4)
n = 4: c(x)^4 = 1 + 4*x + 14*x^2 + 48*x^3 + 165*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 1 = 2, a(2) = 1 + 2 + 5 = 8, a(3) = 1 + 3 + 9 + 28 = 41 and a(4) = 1 + 4 + 14 + 48 + 165 = 232.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 1 1 2
n = 2 | 5 2 1 8
n = 3 | 28 9 3 1 41
n = 4 | 165 48 14 4 1 232
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence [1, 1, 5, 28, 165, ...] = [x^n] c(x)^n = A025174(n).
Examples of supercongruences:
a(13) - a(1) = 3560702069 - 2 = (3^2)*(13^3)*31*37*157 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 11998811140766701 - 41 = (2^2)*5*(7^4)*32213*7756841 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 22794614296746579502 - 1377 = (5^6)*7*53*6491*605796421 == 0 ( mod 5^6 ).
-
seq(add(n/(n+k)*binomial(n+2*k-1,k), k = 0..n), n = 1..25);
#alternative program
c:= x -> (1/2)*(1-sqrt(1-4*x))/x:
G := (x,n) -> series(c(x)^n, x, 51):
seq(add(coeff(G(x, n), x, k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x)^2 * (1 - Sqrt[(1 - 3*x)/(1 + x)]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 28 2020 *)
A333097
a(n) = the n-th order Taylor polynomial (centered at 0) of c(x)^(5*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the sequence of Catalan numbers A000108.
Original entry on oeis.org
1, 6, 76, 1101, 16876, 266881, 4305247, 70414133, 1163355884, 19369868385, 324486751951, 5462851474614, 92346622131103, 1566455916243068, 26649562889363259, 454528917186429226, 7769463895152496364, 133064720735632286722, 2282869928179537263601, 39225214245206751480102
Offset: 0
n-th order Taylor polynomial of c(x)^(5*n):
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^5 = 1 + 5*x + O(x^2)
n = 2: c(x)^10 = 1 + 10*x + 65*x^2 + O(x^3)
n = 3: c(x)^15 = 1 + 15*x + 135*x^2 + 950*x^3 + O(x^4)
n = 4: c(x)^20 = 1 + 20*x + 230*x^2 + 2000*x^3 + 14625*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 5 = 6, a(2) = 1 + 10 + 65 = 76, a(3) = 1 + 15 + 135 + 950 = 1101 and a(4) = 1 + 20 + 230 + 2000 + 14625 = 16876.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^(5*n), n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 5 1 6
n = 2 | 65 10 1 76
n = 3 | 950 135 15 1 1101
n = 4 | 14625 2000 230 20 1 16876
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 1566455916243068 - 6 = 2*(13^3)*104701*3404923 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 11627033261887689372357353 - 1101 = (2^2)*(7^4)*19*29* 2197177609353575713 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 1034770243516278817426081673131 - 266881 = 2*3*(5^7)*31* 13305359*5351978496238483 == 0 ( mod 5^6 ).
-
seq(add(5*n/(5*n+k)*binomial(5*n+2*k-1,k), k = 0..n), n = 1..25);
#alternative program
c:= x → (1/2)*(1-sqrt(1-4*x))/x:
G := (x,n) → series(c(x)^(5*n), x, 151):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Join[{1}, Table[5*Binomial[7*n-1, n] * HypergeometricPFQ[{1, -6*n, -n}, {1/2 - 7*n/2, 1 - 7*n/2}, 1/4]/6, {n, 1, 20}]] (* Vaclav Kotesovec, Mar 28 2020 *)
A351858
a(n) = [x^n] (1 + x + x^2)^(3*n)/(1 + x)^(2*n).
Original entry on oeis.org
1, 1, 7, 19, 103, 376, 1825, 7547, 35175, 153838, 708132, 3181091, 14616481, 66582283, 306501377, 1407473269, 6497464679, 29991098982, 138844558150, 643215119214, 2985368996228, 13868212710623, 64508509024241, 300324344452479, 1399598738196897, 6527698842078501
Offset: 0
Examples of supercongruences:
a(5) - a(1) = 376 - 1 = 3*(5^3) == 0 (mod 5^3)
a(2*7)- a(2) = 306501377 - 7 = 2*5*(7^3)*193*463 == 0 (mod 7^3)
A(5^2) - a(5) = 6527698842078501 - 376 = (5^6)*17*107*229671647 == 0 (mod 5^6)
- R. P. Stanley, Enumerative Combinatorics Volume 2, Cambridge Univ. Press, 1999, Theorem 6.33, p. 197.
Cf.
A000984,
A103885,
A333090,
A333564,
A333565,
A333579,
A333715,
A351856,
A351857,
A351859,
A372211,
A372212,
A372213.
-
seq(add(add((-1)^(n-k-j)*binomial(n,k)*binomial(3*n,j)* binomial(4*n-2*j-k-1,n-k-j), j = 0..n-k), k = 0..n), n = 0..25);
-
A351858[n_]:=Sum[(-1)^(n-k-j)Binomial[n,k]Binomial[3n,j]Binomial[4n-2j-k-1,n-k-j],{k,0,n},{j,0,n-k}];Array[A351858,25,0] (* Paolo Xausa, Oct 04 2023 *)
a[n_]:=SeriesCoefficient[(1 + x + x^2)^(3*n)/(1 + x)^(2*n),{x,0,n}]; Array[a,26,0] (* Stefano Spezia, Apr 30 2024 *)
A333094
a(n) is the n-th order Taylor polynomial (centered at 0) of c(x)^(2*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
Original entry on oeis.org
1, 3, 19, 144, 1171, 9878, 85216, 746371, 6609043, 59008563, 530279894, 4790262348, 43458522976, 395683988547, 3613641184739, 33088666355144, 303670285138067, 2792497004892302, 25724693177503987, 237350917999324431, 2193027397174233046, 20288470364637624223
Offset: 0
n-th order Taylor polynomial of c(x)^(2*n):
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^2 = 1 + 2*x + O(x^2)
n = 2: c(x)^4 = 1 + 4*x + 14*x^2 + O(x^3)
n = 3: c(x)^6 = 1 + 6*x + 27*x^2 + 110*x^3 + O(x^4)
n = 4: c(x)^8 = 1 + 8*x + 44*x^2 + 208*x^3 + 910*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 2 = 3, a(2) = 1 + 4 + 14 = 19, a(3) = 1 + 6 + 27 + 110 = 144 and a(4) = 1 + 8 + 44 + 208 + 910 = 1171.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^(2*n), n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 2 1 3
n = 2 | 14 4 1 19
n = 3 | 110 27 6 1 144
n = 4 | 910 208 44 8 1 1171
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 395683988547 - 3 = (2^6)*(3^2)*(13^3)*312677 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 20288470364637624223 - 144 = (7^3)*17*269*12934629208861 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 150194008594715226556753 - 9878 = (5^6)*2593*5471* 677584325533 == 0 ( mod 5^6 ).
-
seq(add(2*n/(2*n+k)*binomial(2*n+2*k-1, k), k = 0..n), n = 1..25);
#alternative program
c:= x -> (1/2)*(1-sqrt(1-4*x))/x:
G := (x, n) -> series(c(x)^(2*n), x, 76):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x)^2 * (1 - x - Sqrt[(1 - 3*x)*(1 + x)]) / (2*x^2))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
A333095
a(n) = the n-th order Taylor polynomial (centered at 0) of c(x)^(3*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the sequence of Catalan numbers A000108.
Original entry on oeis.org
1, 4, 34, 337, 3554, 38754, 431521, 4874377, 55639010, 640177033, 7412165034, 86256322816, 1007980394849, 11820510331777, 139032549536551, 1639506780365337, 19376785465043938, 229458302589724067, 2721958273545613513, 32339465512495259708, 384758834631081248554
Offset: 0
n-th order Taylor polynomial of c(x)^(3*n):
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^3 = 1 + 3*x + O(x^2)
n = 2: c(x)^6 = 1 + 6*x + 27*x^2 + O(x^3)
n = 3: c(x)^9 = 1 + 9*x + 54*x^2 + 273*x^3 + O(x^4)
n = 4: c(x)^12 = 1 + 12*x + 90*x^2 + 544*x^3 + 2907*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 3 = 4, a(2) = 1 + 6 + 27 = 34, a(3) = 1 + 9 + 54 + 273 = 337 and a(4) = 1 + 12 + 90 + 544 + 2907 = 3554.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 3 1 4
n = 2 | 27 6 1 34
n = 3 | 273 54 9 1 337
n = 4 | 2907 544 90 12 1 3554
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 11820510331777 - 4 = 3*11*(13^3)*(43^2)*88177 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 4583419703934987639046 - 337 = (3^2)*(7^4)*2441* 86893477573061 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 93266278848727959965820004 - 38754 = 2*(5^7)*19* 31416009717466260199 == 0 ( mod 5^6 ).
-
seq(add(3*n/(3*n+k)*binomial(3*n+2*k-1,k), k = 0..n), n = 1..25);
#alternative program
c:= x → (1/2)*(1-sqrt(1-4*x))/x:
G := (x,n) → series(c(x)^(3*n), x, 101):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Join[{1}, Table[3*Binomial[5*n-1, n] * HypergeometricPFQ[{1, -4*n, -n}, {1/2 - 5*n/2, 1 - 5*n/2}, 1/4]/4, {n, 1, 20}]] (* Vaclav Kotesovec, Mar 28 2020 *)
A333096
a(n) = the n-th order Taylor polynomial (centered at 0) of c(x)^(4*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the sequence of Catalan numbers A000108.
Original entry on oeis.org
1, 5, 53, 647, 8373, 111880, 1525511, 21093476, 294663349, 4148593604, 58770091928, 836722722951, 11961868391175, 171601856667701, 2469036254872996, 35615467194043147, 514888180699419829, 7458193213805231529, 108219144962546395364, 1572690742149983040857
Offset: 0
n-th order Taylor polynomial of c(x)^(4*n):
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^4 = 1 + 4*x + O(x^2)
n = 2: c(x)^8 = 1 + 8*x + 44*x^2 + O(x^3)
n = 3: c(x)^12 = 1 + 12*x + 90*x^2 + 544*x^3 + O(x^4)
n = 4: c(x)^16 = 1 + 16*x + 152*x^2 + 1120*x^3 + 7084*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 4 = 5, a(2) = 1 + 8 + 44 = 53, a(3) = 1 + 12 + 90 + 544 = 647 and a(4) = 1 + 16 + 152 + 1120 + 7084 = 8373.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^(4*n), n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 4 1 5
n = 2 | 44 8 1 53
n = 3 | 544 90 12 1 647
n = 4 | 7084 1120 152 16 1 8373
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of congruences:
a(13) - a(1) = 171601856667701 - 5 = (2^4)*3*(7^2)*(13^3)*33208909 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 333475516822140871773101 - 647 = 2*(3^2)*(7^3)* 54012879303877692221 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 15187725485911657497382846255 - 111880 = (3^3)*(5^7)*29* 248279548173268475053 == 0 ( mod 5^6 ).
-
seq(add(4*n/(4*n+k)*binomial(4*n+2*k-1,k), k = 0..n), n = 1..25);
#alternative program
c:= x → (1/2)*(1-sqrt(1-4*x))/x:
G := (x,n) → series(c(x)^(4*n), x, 126):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Join[{1}, Table[4*Binomial[6*n-1, n] * HypergeometricPFQ[{1, -5*n, -n}, {1/2 - 3*n, 1 - 3*n}, 1/4]/5, {n, 1, 20}]] (* Vaclav Kotesovec, Mar 28 2020 *)
A333473
a(n) = [x^n] ( S(x/(1 + x)) )^n, where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. of the large Schröder numbers A006318.
Original entry on oeis.org
1, 2, 12, 92, 752, 6352, 54768, 478928, 4231424, 37680320, 337622912, 3040354176, 27492359936, 249463806464, 2270319909632, 20714443816192, 189418898063360, 1735482632719360, 15928224355854336, 146414296847992832, 1347721096376573952, 12421053168197722112
Offset: 0
Examples of congruences:
a(11) - a(1) = 3040354176 - 2 = 2*(11^2)*13*966419 == 0 ( mod 11^2 ).
a(3*7) - a(3) = 12421053168197722112 - 92 = (2^2)*(3^7)*5*(7^2)* 5795401942927 == 0 ( mod 7^2 ).
a(5^2) - a(5) = 90551762251592215396352 - 6352 = (2^4)*(5^4)*293* 30905038311123623 == 0 ( mod 5^4 ).
-
Sch := x -> (1/2)*(1-x-sqrt(1-6*x+x^2))/x:
G := x → Sch(x/(1+x));
H := (x, n) -> series(G(x)^n, x, 51):
seq(coeff(H(x, n), x, n), n = 0..25)
-
Table[SeriesCoefficient[((1 - Sqrt[1- 4*x - 4*x^2])/(2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 28 2020 *)
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(n+2*k-1, 2*k)); \\ Seiichi Manyama, Nov 24 2024
A372215
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of G(x)^n evaluated at x = 1, where G(x) = (1 - 3*x - sqrt(1 - 10*x + 9*x^2))/(2*x) is the g.f. of A082298.
Original entry on oeis.org
1, 5, 65, 1013, 16897, 292005, 5157569, 92456341, 1675300865, 30604622405, 562675808065, 10398428960309, 192983418877441, 3594314403564773, 67146652988725697, 1257656071818605013, 23609209650223284225, 444081728926392461445, 8367715805572617168449
Offset: 0
n-th order Taylor polynomial of G(x)^n:
n = 0: G(x)^0 = 1 + O(x)
n = 1: G(x)^1 = 1 + 4*x + O(x^2)
n = 2: G(x)^2 = 1 + 8*x + 56*x^2 + O(x^3)
n = 3: G(x)^3 = 1 + 12*x + 108*x^2 + 892 *x^3 + O(x^4)
n = 4: G(x)^4 = 1 + 16*x + 176*x^2 + 1680*x^3 + 15024*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 4 = 5, a(2) = 1 + 8 + 56 = 65, a(3) = 1 + 12 + 108 + 892 = 1013 and a(4) = 1 + 16 + 176 + 1680 + 15024 = 16897.
The triangle of coefficients of the n-th order Taylor polynomial of G(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 4 1 5
n = 2 | 56 8 1 65
n = 3 | 892 108 12 1 1013
n = 4 | 15024 1680 176 16 1 16897
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 3594314403564773 - 5 = (2^5)*(3^3)*(13^3)*29*7643*8543 == 0 (mod 13^3).
a(2*7) - a(2) = 67146652988725697 - 65 = (2^7)*3*(7^4)*23*3943*803057 = 0 (mod 7^4).
-
G := x -> (1/2)*(1 - 3*x - sqrt(1 - 10*x + 9*x^2))/x:
H := (x, n) -> series(G(x)^n, x, 21):
seq(add(coeff(H(x, n), x, k), k = 0..n), n = 0..20);
-
Table[SeriesCoefficient[(2*(1 + x)^2/(1 - 2*x + Sqrt[1 - 8*x]))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 02 2024 *)
-
G(x) = (1 - 3*x - sqrt(1 - 10*x + 9*x^2))/(2*x);
a(n) = my(x='x+O('x^(n+2))); subst(Pol(Vec(G(x)^n)), 'x, 1); \\ Michel Marcus, May 07 2024
A372214
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of G(x)^n evaluated at x = 1, where G(x) = (1 - 2*x - sqrt(1 - 8*x + 4*x^2))/(2*x).
Original entry on oeis.org
1, 4, 40, 487, 6376, 86629, 1203823, 16984678, 242274280, 3484593028, 50444222665, 734066291974, 10728052396111, 157349171819155, 2314894133906086, 34145661019248487, 504810905195542504, 7478066502444399439, 110972913533524676080, 1649407167353221551706, 24549982881130265421001
Offset: 0
n-th order Taylor polynomial of G(x)^n:
n = 0: G(x)^0 = 1 + O(x)
n = 1: G(x)^1 = 1 + 3*x + O(x^2)
n = 2: G(x)^2 = 1 + 6*x + 33*x^2 + O(x^3)
n = 3: G(x)^3 = 1 + 9*x + 63*x^2 + 414*x^3 + O(x^4)
n = 4: G(x)^4 = 1 + 12*x + 102*x^2 + 768*x^3 + 5493*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 3 = 4, a(2) = 1 + 6 + 33 = 40, a(3) = 1 + 9 + 63 + 414 = 487 and a(4) = 1 + 12 + 102 + 768 + 5493 = 6376.
The triangle of coefficients of the n-th order Taylor polynomial of G(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 3 1 4
n = 2 | 33 6 1 40
n = 3 | 414 63 9 1 487
n = 4 | 5493 768 102 12 1 6376
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 157349171819155 - 4 = (3^3)*(13^3)*269*9860941 == 0 (mod 13^3).
a(2*7) - a(2) = 2314894133906086 - 40 = 2*(3^4)*(7^3)*11*12119*312509 == 0 (mod 7^3).
-
G := x -> (1/2)*(1 - 2*x - sqrt(1 - 8*x + 4*x^2))/x:
H := (x, n) -> series(G(x)^n, x, 41):
seq(add(coeff(H(x, n), x, k), k = 0..n), n = 0..20);
-
Table[SeriesCoefficient[(2*(1 + x)^2/(1 - x + Sqrt[1 - 6*x - 3*x^2]))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 02 2024 *)
-
G(x) = (1 - 2*x - sqrt(1 - 8*x + 4*x^2))/(2*x);
a(n) = my(x='x+O('x^(n+2))); subst(Pol(Vec(G(x)^n)), 'x, 1); \\ Michel Marcus, May 07 2024
A333091
a(n) is the n-th order Taylor polynomial (centered at 0) of S(x)^(2*n ) evaluated at x = 1, where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. of the Schröder numbers A006318.
Original entry on oeis.org
1, 5, 57, 761, 10817, 159005, 2386857, 36348401, 559362561, 8676917429, 135445348057, 2125030235113, 33479772021953, 529326516063181, 8393856020704841, 133449301759137761, 2126391547960594433, 33948765589280671589, 542950968447834265209, 8697032976559212532953
Offset: 0
n-th order Taylor polynomial of S(x)^(2*n):
n = 0: S(x)^0 = 1 + O(x)
n = 1: S(x)^2 = 1 + 4*x + O(x^2)
n = 2: S(x)^4 = 1 + 8*x + 48*x^2 + O(x^3)
n = 3: S(x)^6 = 1 + 12*x + 96*x^2 + 652*x^3 + O(x^4)
n = 4: S(x)^8 = 1 + 16*x + 160*x^2 + 1296*x^3 + 9344*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 4 = 5, a(2) = 1 + 8 + 48 = 57, a(3) = 1 + 12 + 96 + 652 = 761 and a(4) = 1 + 16 + 160 + 1296 + 9344 = 10817.
The triangle of coefficients of the n-th order Taylor polynomial of S(x)^(2*n), n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 4 1 5
n = 2 | 48 8 1 57
n = 3 | 652 96 12 1 761
n = 4 | 9344 1296 160 16 1 10817
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence [1, 4, 48, 652, 9344, 138004, ...] = [x^n] S(x)^(2*n), and may also satisfy the above congruences.
Examples of congruences:
a(13) - a(1) = 529326516063181 - 5 = (2^3)*(13^3)*30116438101 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 2240508640665255893197949 - 761 = (2^2)*3*(7^3)*11* 49485569411283149863 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 150633078429259494145205034005 - 159005 = (2^3)*(3^3)*(5^6)*11*23*61*2663*28097*119633*323083 == 0 ( mod 5^6 ).
-
S:= x -> (1/2)*(1-x-sqrt(1-6*x+x^2))/x:
G := (x,n) -> series(S(x)^(2*n), x, 76):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1+x) * (1 - 2*x*(1+x) - Sqrt[1 - 4*x*(1+x)]) / (2*x^2))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
Showing 1-10 of 15 results.
Comments