A378317
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,0) = 0^n and T(n,k) = k * Sum_{r=0..n} binomial(n,r) * binomial(2*r+k,n)/(2*r+k) for k > 0.
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 4, 0, 1, 6, 12, 12, 0, 1, 8, 24, 40, 40, 0, 1, 10, 40, 92, 144, 144, 0, 1, 12, 60, 176, 360, 544, 544, 0, 1, 14, 84, 300, 752, 1440, 2128, 2128, 0, 1, 16, 112, 472, 1400, 3200, 5872, 8544, 8544, 0, 1, 18, 144, 700, 2400, 6352, 13664, 24336, 35008, 35008, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 4, 12, 24, 40, 60, 84, ...
0, 12, 40, 92, 176, 300, 472, ...
0, 40, 144, 360, 752, 1400, 2400, ...
0, 144, 544, 1440, 3200, 6352, 11616, ...
0, 544, 2128, 5872, 13664, 28480, 54768, ...
-
T(n, k, t=0, u=2) = if(k==0, 0^n, k*sum(r=0, n, binomial(n, r)*binomial(t*n+u*r+k, n)/(t*n+u*r+k)));
matrix(7, 7, n, k, T(n-1, k-1))
A378378
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+3*k-1,3*k).
Original entry on oeis.org
1, 2, 16, 170, 1920, 22402, 266800, 3222634, 39328768, 483752258, 5987236816, 74474238698, 930212870784, 11659157743170, 146567181170160, 1847198697449770, 23332153206562816, 295286370825453442, 3743540075432798608, 47532529217041519658, 604366048841146280320
Offset: 0
-
a[n_]:=HypergeometricPFQ[{(1+n)/3,(2+n)/3,-n,n/3},{1/3,2/3,1},-1]; Array[a,21,0] (* Stefano Spezia, Nov 24 2024 *)
-
a(n) = sum(k=0, n, binomial(n, k)*binomial(n+3*k-1, 3*k));
A333472
a(n) = [x^n] ( c (x/(1 + x)) )^n, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
Original entry on oeis.org
1, 1, 3, 13, 59, 276, 1317, 6371, 31131, 153292, 759428, 3780888, 18900389, 94805959, 476945913, 2405454213, 12158471195, 61574325840, 312365992620, 1587052145492, 8074474510884, 41131551386120, 209760563456920, 1070822078321520, 5471643738383781, 27982867986637151
Offset: 0
Examples of congruences:
a(11) - a(1) = 3780888 - 1 = (11^2)*31247 == 0 ( mod 11^2 ).
a(3*7) - a(3) = 41131551386120 - 13 = (7^2)*13*23671*2727841 == 0 ( mod 7^2 ).
a(5^2) - a(5) = 27982867986637151 - 276 = (5^4)*13*74687*46113049 == 0 ( mod 5^4 ).
-
Cat := x -> (1/2)*(1-sqrt(1-4*x))/x:
G := x -> Cat(x/(1+x)):
H := (x,n) -> series(G(x)^n, x, 51):
seq(coeff(H(x, n), x, n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x - Sqrt[1 - 2*x - 3*x^2]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 29 2020 *)
Showing 1-3 of 3 results.
Comments