A333090
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of S(x)^n evaluated at x = 1, where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. of the Schröder numbers A006318.
Original entry on oeis.org
1, 3, 21, 183, 1729, 17003, 171237, 1752047, 18130433, 189218451, 1987916021, 20996253479, 222730436161, 2371369720827, 25325636818629, 271189884041183, 2910628489408513, 31302328583021091, 337241582882175189, 3639109029230457751, 39324814984207649729
Offset: 0
n-th order Taylor polynomial of S(x)^n:
n = 0: S(x)^0 = 1 + O(x)
n = 1: S(x)^1 = 1 + 2*x + O(x^2)
n = 2: S(x)^2 = 1 + 4*x + 16*x^2 + O(x^3)
n = 3: S(x)^3 = 1 + 6*x + 30*x^2 + 146*x^3 + O(x^4)
n = 4: S(x)^4 = 1 + 8*x + 48*x^2 + 264*x^3 + 1408*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 2 = 3, a(2) = 1 + 4 + 16 = 21, a(3) = 1 + 6 + 30 + 146 = 183 and a(4) = 1 + 8 + 48 + 264 + 1408 = 1729.
The triangle of coefficients of the n-th order Taylor polynomial of S(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 2 1 3
n = 2 | 16 4 1 21
n = 3 | 146 30 6 1 183
n = 4 | 1408 264 48 8 1 1729
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence is [x^n]S(x)^n = A103885(n).
Examples of supercongruences:
a(13) - a(1) = 2371369720827 - 3 = (2^3)*(3^2)*(13^3)*83*180617 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 425495386400395896971 - 183 = (2^2)*(7^3*)*19*47* 347287606554703 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 5894174066435445232142003 - 17003 = (2^3)*(3^4)*(5^6)*17* 41*101*5081*1627513421 == 0 ( mod 5^6 ).
-
S:= x -> (1/2)*(1-x-sqrt(1-6*x+x^2))/x:
G := (x,n) -> series(S(x)^n, x, 51):
seq(add(coeff(G(x, n), x, k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x)*(1 - Sqrt[1 - 4*x - 4*x^2])/(2*x))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
A333093
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of c(x)^n evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
Original entry on oeis.org
1, 2, 8, 41, 232, 1377, 8399, 52138, 327656, 2077934, 13270633, 85226594, 549837391, 3560702069, 23132584742, 150695482041, 984021596136, 6438849555963, 42208999230224, 277144740254566, 1822379123910857, 11998811140766701, 79095365076843134
Offset: 0
n-th order Taylor polynomial of c(x)^n:
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^1 = 1 + x + O(x^2)
n = 2: c(x)^2 = 1 + 2*x + 5*x^2 + O(x^3)
n = 3: c(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + O(x^4)
n = 4: c(x)^4 = 1 + 4*x + 14*x^2 + 48*x^3 + 165*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 1 = 2, a(2) = 1 + 2 + 5 = 8, a(3) = 1 + 3 + 9 + 28 = 41 and a(4) = 1 + 4 + 14 + 48 + 165 = 232.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 1 1 2
n = 2 | 5 2 1 8
n = 3 | 28 9 3 1 41
n = 4 | 165 48 14 4 1 232
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence [1, 1, 5, 28, 165, ...] = [x^n] c(x)^n = A025174(n).
Examples of supercongruences:
a(13) - a(1) = 3560702069 - 2 = (3^2)*(13^3)*31*37*157 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 11998811140766701 - 41 = (2^2)*5*(7^4)*32213*7756841 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 22794614296746579502 - 1377 = (5^6)*7*53*6491*605796421 == 0 ( mod 5^6 ).
-
seq(add(n/(n+k)*binomial(n+2*k-1,k), k = 0..n), n = 1..25);
#alternative program
c:= x -> (1/2)*(1-sqrt(1-4*x))/x:
G := (x,n) -> series(c(x)^n, x, 51):
seq(add(coeff(G(x, n), x, k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x)^2 * (1 - Sqrt[(1 - 3*x)/(1 + x)]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 28 2020 *)
A333094
a(n) is the n-th order Taylor polynomial (centered at 0) of c(x)^(2*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
Original entry on oeis.org
1, 3, 19, 144, 1171, 9878, 85216, 746371, 6609043, 59008563, 530279894, 4790262348, 43458522976, 395683988547, 3613641184739, 33088666355144, 303670285138067, 2792497004892302, 25724693177503987, 237350917999324431, 2193027397174233046, 20288470364637624223
Offset: 0
n-th order Taylor polynomial of c(x)^(2*n):
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^2 = 1 + 2*x + O(x^2)
n = 2: c(x)^4 = 1 + 4*x + 14*x^2 + O(x^3)
n = 3: c(x)^6 = 1 + 6*x + 27*x^2 + 110*x^3 + O(x^4)
n = 4: c(x)^8 = 1 + 8*x + 44*x^2 + 208*x^3 + 910*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 2 = 3, a(2) = 1 + 4 + 14 = 19, a(3) = 1 + 6 + 27 + 110 = 144 and a(4) = 1 + 8 + 44 + 208 + 910 = 1171.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^(2*n), n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 2 1 3
n = 2 | 14 4 1 19
n = 3 | 110 27 6 1 144
n = 4 | 910 208 44 8 1 1171
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 395683988547 - 3 = (2^6)*(3^2)*(13^3)*312677 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 20288470364637624223 - 144 = (7^3)*17*269*12934629208861 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 150194008594715226556753 - 9878 = (5^6)*2593*5471* 677584325533 == 0 ( mod 5^6 ).
-
seq(add(2*n/(2*n+k)*binomial(2*n+2*k-1, k), k = 0..n), n = 1..25);
#alternative program
c:= x -> (1/2)*(1-sqrt(1-4*x))/x:
G := (x, n) -> series(c(x)^(2*n), x, 76):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x)^2 * (1 - x - Sqrt[(1 - 3*x)*(1 + x)]) / (2*x^2))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
A333095
a(n) = the n-th order Taylor polynomial (centered at 0) of c(x)^(3*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the sequence of Catalan numbers A000108.
Original entry on oeis.org
1, 4, 34, 337, 3554, 38754, 431521, 4874377, 55639010, 640177033, 7412165034, 86256322816, 1007980394849, 11820510331777, 139032549536551, 1639506780365337, 19376785465043938, 229458302589724067, 2721958273545613513, 32339465512495259708, 384758834631081248554
Offset: 0
n-th order Taylor polynomial of c(x)^(3*n):
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^3 = 1 + 3*x + O(x^2)
n = 2: c(x)^6 = 1 + 6*x + 27*x^2 + O(x^3)
n = 3: c(x)^9 = 1 + 9*x + 54*x^2 + 273*x^3 + O(x^4)
n = 4: c(x)^12 = 1 + 12*x + 90*x^2 + 544*x^3 + 2907*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 3 = 4, a(2) = 1 + 6 + 27 = 34, a(3) = 1 + 9 + 54 + 273 = 337 and a(4) = 1 + 12 + 90 + 544 + 2907 = 3554.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 3 1 4
n = 2 | 27 6 1 34
n = 3 | 273 54 9 1 337
n = 4 | 2907 544 90 12 1 3554
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 11820510331777 - 4 = 3*11*(13^3)*(43^2)*88177 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 4583419703934987639046 - 337 = (3^2)*(7^4)*2441* 86893477573061 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 93266278848727959965820004 - 38754 = 2*(5^7)*19* 31416009717466260199 == 0 ( mod 5^6 ).
-
seq(add(3*n/(3*n+k)*binomial(3*n+2*k-1,k), k = 0..n), n = 1..25);
#alternative program
c:= x → (1/2)*(1-sqrt(1-4*x))/x:
G := (x,n) → series(c(x)^(3*n), x, 101):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Join[{1}, Table[3*Binomial[5*n-1, n] * HypergeometricPFQ[{1, -4*n, -n}, {1/2 - 5*n/2, 1 - 5*n/2}, 1/4]/4, {n, 1, 20}]] (* Vaclav Kotesovec, Mar 28 2020 *)
A333096
a(n) = the n-th order Taylor polynomial (centered at 0) of c(x)^(4*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the sequence of Catalan numbers A000108.
Original entry on oeis.org
1, 5, 53, 647, 8373, 111880, 1525511, 21093476, 294663349, 4148593604, 58770091928, 836722722951, 11961868391175, 171601856667701, 2469036254872996, 35615467194043147, 514888180699419829, 7458193213805231529, 108219144962546395364, 1572690742149983040857
Offset: 0
n-th order Taylor polynomial of c(x)^(4*n):
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^4 = 1 + 4*x + O(x^2)
n = 2: c(x)^8 = 1 + 8*x + 44*x^2 + O(x^3)
n = 3: c(x)^12 = 1 + 12*x + 90*x^2 + 544*x^3 + O(x^4)
n = 4: c(x)^16 = 1 + 16*x + 152*x^2 + 1120*x^3 + 7084*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 4 = 5, a(2) = 1 + 8 + 44 = 53, a(3) = 1 + 12 + 90 + 544 = 647 and a(4) = 1 + 16 + 152 + 1120 + 7084 = 8373.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^(4*n), n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 4 1 5
n = 2 | 44 8 1 53
n = 3 | 544 90 12 1 647
n = 4 | 7084 1120 152 16 1 8373
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of congruences:
a(13) - a(1) = 171601856667701 - 5 = (2^4)*3*(7^2)*(13^3)*33208909 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 333475516822140871773101 - 647 = 2*(3^2)*(7^3)* 54012879303877692221 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 15187725485911657497382846255 - 111880 = (3^3)*(5^7)*29* 248279548173268475053 == 0 ( mod 5^6 ).
-
seq(add(4*n/(4*n+k)*binomial(4*n+2*k-1,k), k = 0..n), n = 1..25);
#alternative program
c:= x → (1/2)*(1-sqrt(1-4*x))/x:
G := (x,n) → series(c(x)^(4*n), x, 126):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Join[{1}, Table[4*Binomial[6*n-1, n] * HypergeometricPFQ[{1, -5*n, -n}, {1/2 - 3*n, 1 - 3*n}, 1/4]/5, {n, 1, 20}]] (* Vaclav Kotesovec, Mar 28 2020 *)
A333091
a(n) is the n-th order Taylor polynomial (centered at 0) of S(x)^(2*n ) evaluated at x = 1, where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. of the Schröder numbers A006318.
Original entry on oeis.org
1, 5, 57, 761, 10817, 159005, 2386857, 36348401, 559362561, 8676917429, 135445348057, 2125030235113, 33479772021953, 529326516063181, 8393856020704841, 133449301759137761, 2126391547960594433, 33948765589280671589, 542950968447834265209, 8697032976559212532953
Offset: 0
n-th order Taylor polynomial of S(x)^(2*n):
n = 0: S(x)^0 = 1 + O(x)
n = 1: S(x)^2 = 1 + 4*x + O(x^2)
n = 2: S(x)^4 = 1 + 8*x + 48*x^2 + O(x^3)
n = 3: S(x)^6 = 1 + 12*x + 96*x^2 + 652*x^3 + O(x^4)
n = 4: S(x)^8 = 1 + 16*x + 160*x^2 + 1296*x^3 + 9344*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 4 = 5, a(2) = 1 + 8 + 48 = 57, a(3) = 1 + 12 + 96 + 652 = 761 and a(4) = 1 + 16 + 160 + 1296 + 9344 = 10817.
The triangle of coefficients of the n-th order Taylor polynomial of S(x)^(2*n), n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 4 1 5
n = 2 | 48 8 1 57
n = 3 | 652 96 12 1 761
n = 4 | 9344 1296 160 16 1 10817
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence [1, 4, 48, 652, 9344, 138004, ...] = [x^n] S(x)^(2*n), and may also satisfy the above congruences.
Examples of congruences:
a(13) - a(1) = 529326516063181 - 5 = (2^3)*(13^3)*30116438101 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 2240508640665255893197949 - 761 = (2^2)*3*(7^3)*11* 49485569411283149863 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 150633078429259494145205034005 - 159005 = (2^3)*(3^3)*(5^6)*11*23*61*2663*28097*119633*323083 == 0 ( mod 5^6 ).
-
S:= x -> (1/2)*(1-x-sqrt(1-6*x+x^2))/x:
G := (x,n) -> series(S(x)^(2*n), x, 76):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1+x) * (1 - 2*x*(1+x) - Sqrt[1 - 4*x*(1+x)]) / (2*x^2))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
A333092
a(n) is the n-th order Taylor polynomial (centered at 0) of S(x)^(3*n) evaluated at x = 1, where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the o.g.f. of the Schröder numbers A006318.
Original entry on oeis.org
1, 7, 109, 1951, 36993, 724007, 14457421, 292732671, 5987886081, 123440423047, 2560421160109, 53373725431583, 1117198199782785, 23465732683090471, 494330214846965389, 10440064992542621951, 220978578227187097601, 4686426367646858888711, 99559270036968523118317
Offset: 0
n-th order Taylor polynomial of S(x)^(3*n):
n = 0: S(x)^0 = 1 + O(x)
n = 1: S(x)^3 = 1 + 6*x + O(x^2)
n = 2: S(x)^6 = 1 + 12*x + 96*x^2 + O(x^3)
n = 3: S(x)^9 = 1 + 18*x + 198*x^2 + 1734*x^3 + O(x^4)
n = 4: S(x)^12 = 1 + 24*x + 336*x^2 + 3608*x^3 + 33024*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 6 = 7, a(2) = 1 + 12 + 96 = 109, a(3) = 1 + 18 + 198 + 1734 = 1951 and a(4) = 1 + 24 + 336 + 3608 + 33024 = 36993.
The triangle of coefficients of the n-th order Taylor polynomial of S(x)^(2*n), n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 6 1 7
n = 2 | 96 12 1 109
n = 3 | 1734 198 18 1 1951
n = 4 | 33024 3608 336 24 1 36993
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence [1, 6, 96, 1734, 33024, 648006, ...] = [x^n] S(x)^(3*n), and may also satisfy the above congruences.
Examples of congruences:
a(13) - a(1) = 23465732683090471 - 7 = (2^5)*(3^4)*(13^3)*83*911*54497 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 962815680123979633351467303 - 1951 = (2^3)*(7^3)*29*41* 1832861*161008076794727 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 201479167004032422703424646224007 - 724007 = (2^5)*(5^6)* 402958334008064845406849291 == 0 ( mod 5^6 ).
-
S:= x -> (1/2)*(1-x-sqrt(1-6*x+x^2))/x:
G := (x,n) -> series(S(x)^(3*n), x, 101):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1+x)*(1 - 3*x*(1+x) + (x^2 + x - 1)*Sqrt[1 - 4*x*(1+x)]) / (2*x^3))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
Showing 1-7 of 7 results.
Comments