A333093
a(n) is equal to the n-th order Taylor polynomial (centered at 0) of c(x)^n evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
Original entry on oeis.org
1, 2, 8, 41, 232, 1377, 8399, 52138, 327656, 2077934, 13270633, 85226594, 549837391, 3560702069, 23132584742, 150695482041, 984021596136, 6438849555963, 42208999230224, 277144740254566, 1822379123910857, 11998811140766701, 79095365076843134
Offset: 0
n-th order Taylor polynomial of c(x)^n:
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^1 = 1 + x + O(x^2)
n = 2: c(x)^2 = 1 + 2*x + 5*x^2 + O(x^3)
n = 3: c(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + O(x^4)
n = 4: c(x)^4 = 1 + 4*x + 14*x^2 + 48*x^3 + 165*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 1 = 2, a(2) = 1 + 2 + 5 = 8, a(3) = 1 + 3 + 9 + 28 = 41 and a(4) = 1 + 4 + 14 + 48 + 165 = 232.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 1 1 2
n = 2 | 5 2 1 8
n = 3 | 28 9 3 1 41
n = 4 | 165 48 14 4 1 232
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group. The first column sequence [1, 1, 5, 28, 165, ...] = [x^n] c(x)^n = A025174(n).
Examples of supercongruences:
a(13) - a(1) = 3560702069 - 2 = (3^2)*(13^3)*31*37*157 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 11998811140766701 - 41 = (2^2)*5*(7^4)*32213*7756841 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 22794614296746579502 - 1377 = (5^6)*7*53*6491*605796421 == 0 ( mod 5^6 ).
-
seq(add(n/(n+k)*binomial(n+2*k-1,k), k = 0..n), n = 1..25);
#alternative program
c:= x -> (1/2)*(1-sqrt(1-4*x))/x:
G := (x,n) -> series(c(x)^n, x, 51):
seq(add(coeff(G(x, n), x, k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x)^2 * (1 - Sqrt[(1 - 3*x)/(1 + x)]) / (2*x))^n, {x, 0, n}], {n, 0, 25}] (* Vaclav Kotesovec, Mar 28 2020 *)
A333097
a(n) = the n-th order Taylor polynomial (centered at 0) of c(x)^(5*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the sequence of Catalan numbers A000108.
Original entry on oeis.org
1, 6, 76, 1101, 16876, 266881, 4305247, 70414133, 1163355884, 19369868385, 324486751951, 5462851474614, 92346622131103, 1566455916243068, 26649562889363259, 454528917186429226, 7769463895152496364, 133064720735632286722, 2282869928179537263601, 39225214245206751480102
Offset: 0
n-th order Taylor polynomial of c(x)^(5*n):
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^5 = 1 + 5*x + O(x^2)
n = 2: c(x)^10 = 1 + 10*x + 65*x^2 + O(x^3)
n = 3: c(x)^15 = 1 + 15*x + 135*x^2 + 950*x^3 + O(x^4)
n = 4: c(x)^20 = 1 + 20*x + 230*x^2 + 2000*x^3 + 14625*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 5 = 6, a(2) = 1 + 10 + 65 = 76, a(3) = 1 + 15 + 135 + 950 = 1101 and a(4) = 1 + 20 + 230 + 2000 + 14625 = 16876.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^(5*n), n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 5 1 6
n = 2 | 65 10 1 76
n = 3 | 950 135 15 1 1101
n = 4 | 14625 2000 230 20 1 16876
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 1566455916243068 - 6 = 2*(13^3)*104701*3404923 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 11627033261887689372357353 - 1101 = (2^2)*(7^4)*19*29* 2197177609353575713 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 1034770243516278817426081673131 - 266881 = 2*3*(5^7)*31* 13305359*5351978496238483 == 0 ( mod 5^6 ).
-
seq(add(5*n/(5*n+k)*binomial(5*n+2*k-1,k), k = 0..n), n = 1..25);
#alternative program
c:= x → (1/2)*(1-sqrt(1-4*x))/x:
G := (x,n) → series(c(x)^(5*n), x, 151):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Join[{1}, Table[5*Binomial[7*n-1, n] * HypergeometricPFQ[{1, -6*n, -n}, {1/2 - 7*n/2, 1 - 7*n/2}, 1/4]/6, {n, 1, 20}]] (* Vaclav Kotesovec, Mar 28 2020 *)
A333094
a(n) is the n-th order Taylor polynomial (centered at 0) of c(x)^(2*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the Catalan numbers A000108.
Original entry on oeis.org
1, 3, 19, 144, 1171, 9878, 85216, 746371, 6609043, 59008563, 530279894, 4790262348, 43458522976, 395683988547, 3613641184739, 33088666355144, 303670285138067, 2792497004892302, 25724693177503987, 237350917999324431, 2193027397174233046, 20288470364637624223
Offset: 0
n-th order Taylor polynomial of c(x)^(2*n):
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^2 = 1 + 2*x + O(x^2)
n = 2: c(x)^4 = 1 + 4*x + 14*x^2 + O(x^3)
n = 3: c(x)^6 = 1 + 6*x + 27*x^2 + 110*x^3 + O(x^4)
n = 4: c(x)^8 = 1 + 8*x + 44*x^2 + 208*x^3 + 910*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 2 = 3, a(2) = 1 + 4 + 14 = 19, a(3) = 1 + 6 + 27 + 110 = 144 and a(4) = 1 + 8 + 44 + 208 + 910 = 1171.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^(2*n), n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 2 1 3
n = 2 | 14 4 1 19
n = 3 | 110 27 6 1 144
n = 4 | 910 208 44 8 1 1171
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 395683988547 - 3 = (2^6)*(3^2)*(13^3)*312677 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 20288470364637624223 - 144 = (7^3)*17*269*12934629208861 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 150194008594715226556753 - 9878 = (5^6)*2593*5471* 677584325533 == 0 ( mod 5^6 ).
-
seq(add(2*n/(2*n+k)*binomial(2*n+2*k-1, k), k = 0..n), n = 1..25);
#alternative program
c:= x -> (1/2)*(1-sqrt(1-4*x))/x:
G := (x, n) -> series(c(x)^(2*n), x, 76):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Table[SeriesCoefficient[((1 + x)^2 * (1 - x - Sqrt[(1 - 3*x)*(1 + x)]) / (2*x^2))^n, {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 28 2020 *)
A333095
a(n) = the n-th order Taylor polynomial (centered at 0) of c(x)^(3*n) evaluated at x = 1, where c(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. of the sequence of Catalan numbers A000108.
Original entry on oeis.org
1, 4, 34, 337, 3554, 38754, 431521, 4874377, 55639010, 640177033, 7412165034, 86256322816, 1007980394849, 11820510331777, 139032549536551, 1639506780365337, 19376785465043938, 229458302589724067, 2721958273545613513, 32339465512495259708, 384758834631081248554
Offset: 0
n-th order Taylor polynomial of c(x)^(3*n):
n = 0: c(x)^0 = 1 + O(x)
n = 1: c(x)^3 = 1 + 3*x + O(x^2)
n = 2: c(x)^6 = 1 + 6*x + 27*x^2 + O(x^3)
n = 3: c(x)^9 = 1 + 9*x + 54*x^2 + 273*x^3 + O(x^4)
n = 4: c(x)^12 = 1 + 12*x + 90*x^2 + 544*x^3 + 2907*x^4 + O(x^5)
Setting x = 1 gives a(0) = 1, a(1) = 1 + 3 = 4, a(2) = 1 + 6 + 27 = 34, a(3) = 1 + 9 + 54 + 273 = 337 and a(4) = 1 + 12 + 90 + 544 + 2907 = 3554.
The triangle of coefficients of the n-th order Taylor polynomial of c(x)^n, n >= 0, in descending powers of x begins
row sums
n = 0 | 1 1
n = 1 | 3 1 4
n = 2 | 27 6 1 34
n = 3 | 273 54 9 1 337
n = 4 | 2907 544 90 12 1 3554
...
This is a Riordan array belonging to the Hitting time subgroup of the Riordan group.
Examples of supercongruences:
a(13) - a(1) = 11820510331777 - 4 = 3*11*(13^3)*(43^2)*88177 == 0 ( mod 13^3 ).
a(3*7) - a(3) = 4583419703934987639046 - 337 = (3^2)*(7^4)*2441* 86893477573061 == 0 ( mod 7^3 ).
a(5^2) - a(5) = 93266278848727959965820004 - 38754 = 2*(5^7)*19* 31416009717466260199 == 0 ( mod 5^6 ).
-
seq(add(3*n/(3*n+k)*binomial(3*n+2*k-1,k), k = 0..n), n = 1..25);
#alternative program
c:= x → (1/2)*(1-sqrt(1-4*x))/x:
G := (x,n) → series(c(x)^(3*n), x, 101):
seq(add(coeff(G(x, n), x, n-k), k = 0..n), n = 0..25);
-
Join[{1}, Table[3*Binomial[5*n-1, n] * HypergeometricPFQ[{1, -4*n, -n}, {1/2 - 5*n/2, 1 - 5*n/2}, 1/4]/4, {n, 1, 20}]] (* Vaclav Kotesovec, Mar 28 2020 *)
Showing 1-4 of 4 results.
Comments