A269922
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 2.
Original entry on oeis.org
21, 483, 483, 6468, 15018, 6468, 66066, 258972, 258972, 66066, 570570, 3288327, 5554188, 3288327, 570570, 4390386, 34374186, 85421118, 85421118, 34374186, 4390386, 31039008, 313530000, 1059255456, 1558792200, 1059255456, 313530000, 31039008
Offset: 4
Triangle starts:
n\f [1] [2] [3] [4] [5] [6]
[4] 21;
[5] 483, 483;
[6] 6468, 15018, 6468;
[7] 66066, 258972, 258972, 66066;
[8] 570570, 3288327, 5554188, 3288327, 570570;
[9] 4390386, 34374186, 85421118, 85421118, 34374186, 4390386;
[10] ...
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 2], {n, 4, 10}, {f, 1, n-3}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 10; G = 2; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A035309
Triangle read by rows giving number of ways to glue sides of a 2n-gon so as to produce a surface of genus g.
Original entry on oeis.org
1, 1, 2, 1, 5, 10, 14, 70, 21, 42, 420, 483, 132, 2310, 6468, 1485, 429, 12012, 66066, 56628, 1430, 60060, 570570, 1169740, 225225, 4862, 291720, 4390386, 17454580, 12317877, 16796, 1385670, 31039008, 211083730, 351683046, 59520825, 58786, 6466460, 205633428, 2198596400, 7034538511, 4304016990
Offset: 0
Triangle starts:
n\g [0] [1] [2] [3] [4] [5]
[0] 1;
[1] 1;
[2] 2; 1;
[3] 5, 10;
[4] 14, 70, 21;
[5] 42, 420, 483;
[6] 132, 2310, 6468, 1485;
[7] 429, 12012, 66066, 56628;
[8] 1430, 60060, 570570, 1169740, 225225;
[9] 4862, 291720, 4390386, 17454580, 12317877;
[10] 16796, 1385670, 31039008, 211083730, 351683046, 59520825;
[11] ...
- Gheorghe Coserea, Rows n = 0..200, flattened
- E. T. Akhmedov and Sh. Shakirov, Gluing of Surfaces with Polygonal Boundaries, arXiv:0712.2448 [math.CO], 2007-2008, see p. 1.
- Sean R. Carrell and Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
- Ricky X. F. Chen and Christian M. Reidys, A Combinatorial Identity Concerning Plane Colored Trees and its Applications, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.7.
- Benoit Collins, Ion Nechita, and Deping Ye, The absolute positive partial transpose property for random induced states, Random Matrices: Theory Appl. 01, 1250002 (2012); arXiv:1108.1935 [math-ph], 2011.
- I. P. Goulden and A. Nica, A direct bijection for the Harer-Zagier formula, J. Comb. Theory, A, 111, No. 2 (2005), 224-238.
- J. L. Harer and D. B. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math., 85, No.3 (1986), 457-486.
- S. Lando and A. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, 141, Springer, 2004, p. 157.
- B. Lass, Démonstration combinatoire de la formule de Harer-Zagier, C. R. Acad. Sci. Paris, Serie I, 333, No.3 (2001), 155-160.
- A. Mironov, A. Morozov, A. Popolitov, and Sh. Shakirov, Summing up perturbation series around superintegrable point, arXiv:2401.14392 [hep-th], 2024.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Theory B 13 (1972), 192-218 (Tab. 1).
- Nikolai Wyderka and Andreas Ketterer, Probing the geometry of correlation matrices with randomized measurements, arXiv:2211.09610 [quant-ph], 2022.
- Liang Zhao and Fengyao Yan, Note on Total Positivity for a Class of Recursive Matrices, Journal of Integer Sequences, Vol. 19 (2016), Article 16.6.5.
- Jian Zhou, Hermitian One-Matrix Model and KP Hierarchy, arXiv:1809.07951 [math-ph], 2018.
The last entries in the even rows give
A035319.
-
a[n_, g_] := (2n)!/(n+1)!/(n-2g)! Coefficient[Series[(x/2/Tanh[x/2])^(n+1), {x, 0, n}], x, 2g]; Flatten[DeleteCases[#, 0]& /@ Table[a[n, g], {n, 0, 11}, {g, 0, n}]] (* Jean-François Alcover, Aug 30 2011, after E. T. Akhmedov & Sh. Shakirov *)
-
N = 10; F = 1; gmax(n) = n\2;
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x + O('x^(F+1)));
concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))))
\\ Gheorghe Coserea, Mar 16 2016
A288082
a(n) is the number of rooted maps with n edges and 2 faces on an orientable surface of genus 2.
Original entry on oeis.org
483, 15018, 258972, 3288327, 34374186, 313530000, 2583699888, 19678611645, 140725699686, 955708437684, 6216591472728, 38985279745230, 236923660397172, 1401097546161936, 8089830217844928, 45732525474843801, 253705943922820830, 1383896652090932364, 7434748752218650632, 39394773780853063650
Offset: 5
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 2, 2];
Table[a[n], {n, 5, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288082_ser(N) = {
my(y = A000108_ser(N+1));
3*y*(y-1)^5*(7*y^4 + 294*y^3 + 309*y^2 - 547*y + 98)/(y-2)^14;
};
Vec(A288082_ser(20))
A288083
a(n) is the number of rooted maps with n edges and 3 faces on an orientable surface of genus 2.
Original entry on oeis.org
6468, 258972, 5554188, 85421118, 1059255456, 11270290416, 106853266632, 925572602058, 7454157823560, 56532447160536, 407653880116680, 2815913391715452, 18743188498056288, 120789163612555200, 756589971284883792, 4621041111902656770, 27595482540212519064, 161490751719681569736
Offset: 6
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 3, 2];
Table[a[n], {n, 6, 23}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288083_ser(N) = {
my(y = A000108_ser(N+1));
-6*y*(y-1)^6*(161*y^5 + 4005*y^4 + 4173*y^3 - 10701*y^2 + 2880*y + 560)/(y-2)^17;
};
Vec(A288083_ser(18))
A288084
a(n) is the number of rooted maps with n edges and 4 faces on an orientable surface of genus 2.
Original entry on oeis.org
66066, 3288327, 85421118, 1558792200, 22555934280, 276221817810, 2979641557620, 29079129795702, 261637840342860, 2200626948631386, 17486142956133684, 132344695964811720, 960323177351524512, 6716133365837116980, 45466867668336614472, 299027167905149145858, 1916387674555902480660
Offset: 7
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 4, 2];
Table[a[n], {n, 7, 23}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288084_ser(N) = {
my(y = A000108_ser(N+1));
3*y*(y-1)^7*(9318*y^6 + 178328*y^5 + 177929*y^4 - 611583*y^3 + 195218*y^2 + 110388*y - 37576)/(y-2)^20;
};
Vec(A288084_ser(17))
A288085
a(n) is the number of rooted maps with n edges and 5 faces on an orientable surface of genus 2.
Original entry on oeis.org
570570, 34374186, 1059255456, 22555934280, 375708427812, 5235847653036, 63648856688592, 694146691745820, 6928413234959820, 64232028100704156, 559373367462490656, 4616545437250956192, 36362952155187558600, 274925536462366808760, 2004633652255211204832, 14152391716870383219492
Offset: 8
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 5, 2];
Table[a[n], {n, 8, 23}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288085_ser(N) = {
my(y = A000108_ser(N+1));
-6*y*(y-1)^8*(108346*y^7 + 1760421*y^6 + 1641979*y^5 - 7296839*y^4 + 2560152*y^3 + 2713196*y^2 - 1525104*y + 132944)/(y-2)^23;
};
Vec(A288085_ser(16))
A288086
a(n) is the number of rooted maps with n edges and 6 faces on an orientable surface of genus 2.
Original entry on oeis.org
4390386, 313530000, 11270290416, 276221817810, 5235847653036, 82234427131416, 1117259292848016, 13518984452463630, 148755268498286436, 1511718920778951024, 14358354462488121408, 128656798319026864068, 1095747149735034238680, 8924653047010981590288, 69866689045523025725664
Offset: 9
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 6, 2];
Table[a[n], {n, 9, 23}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288086_ser(N) = {
my(y = A000108_ser(N+1));
6*y*(y-1)^9*(2211997*y^8 + 32071458*y^7 + 27414609*y^6 - 154896511*y^5 + 58087530*y^4 + 94331624*y^3 - 68497296*y^2 + 8775424*y + 1232896)/(y-2)^26;
};
Vec(A288086_ser(15))
A288087
a(n) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus 2.
Original entry on oeis.org
31039008, 2583699888, 106853266632, 2979641557620, 63648856688592, 1117259292848016, 16842445235560944, 224686278407291148, 2710382626755160416, 30044423965980553536, 309859885439753598768, 3002524783711124880936, 27551689577648333614176, 240961534103705377359840, 2019318707410947848445792
Offset: 10
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 7, 2];
Table[a[n], {n, 10, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288087_ser(N) = {
my(y = A000108_ser(N+1));
-12*y*(y-1)^10*(20697615*y^9 + 275716321*y^8 + 211910021*y^7 - 1514443109*y^6 + 601694224*y^5 + 1328709592*y^4 - 1136750032*y^3 + 153705072*y^2 + 76788992*y - 15442112)/(y-2)^29;
};
Vec(A288087_ser(15))
A288088
a(n) is the number of rooted maps with n edges and 8 faces on an orientable surface of genus 2.
Original entry on oeis.org
205633428, 19678611645, 925572602058, 29079129795702, 694146691745820, 13518984452463630, 224686278407291148, 3286157560248860532, 43241609165618454096, 520516978029736518606, 5805858136761540452700, 60619447491266688750132, 597358002436877437320936, 5593151345725345725640044
Offset: 11
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 8, 2];
Table[a[n], {n, 11, 24}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288088_ser(N) = {
my(y = A000108_ser(N+1));
3*y*(y-1)^11*(1455480376*y^10 + 18151410348*y^9 + 12284790745*y^8 - 111454641175*y^7 + 46880062914*y^6 + 129967691724*y^5 - 125047028168*y^4 + 14650142480*y^3 + 19075464224*y^2 - 6255822912*y + 360993920)/(y-2)^32;
};
Vec(A288088_ser(14))
A288089
a(n) is the number of rooted maps with n edges and 9 faces on an orientable surface of genus 2.
Original entry on oeis.org
1293938646, 140725699686, 7454157823560, 261637840342860, 6928413234959820, 148755268498286436, 2710382626755160416, 43241609165618454096, 617910462111714896820, 8044640800289827566756, 96690983139765469347024, 1084226645505246141589704, 11439196912435362172792536, 114351801899024314438876200
Offset: 12
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 9, 2];
Table[a[n], {n, 12, 25}] (* Jean-François Alcover, Oct 18 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288089_ser(N) = {
my(y = A000108_ser(N+1));
-6*y*(y-1)^12*(12205186004*y^11 + 144345246789*y^10 + 83883548039*y^9 - 978172313331*y^8 + 436600889944*y^7 + 1435650005364*y^6 - 1511798886368*y^5 + 121539026592*y^4 + 411304907520*y^3 - 171035694144*y^2 + 14120686592*y + 1573053440)/(y-2)^35;
};
Vec(A288089_ser(13))
Showing 1-10 of 12 results.
Comments