Dylan Thurston has authored 3 sequences.
A260811
Number of trivalent bipartite connected simple graphs with 2n nodes and girth at least 6.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 1, 1, 3, 10, 28, 162, 1201, 11415, 125571, 1514489
Offset: 0
Connected bipartite trivalent simple graphs with girth at least g:
A006823 (g=4), this sequence (g=6),
A260813 (g=8).
A260813
Number of trivalent bipartite connected simple graphs with 2n nodes and girth at least 8.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 3, 10, 101, 2510, 79605, 2607595, 81716416, 2472710752
Offset: 0
Connected bipartite trivalent simple graphs with girth at least g:
A006823 (g=4),
A260811 (g=6), this sequence (g=8).
a(23)-a(24) from the House-of-Graphs added by
R. J. Mathar, Sep 29 2017
A035309
Triangle read by rows giving number of ways to glue sides of a 2n-gon so as to produce a surface of genus g.
Original entry on oeis.org
1, 1, 2, 1, 5, 10, 14, 70, 21, 42, 420, 483, 132, 2310, 6468, 1485, 429, 12012, 66066, 56628, 1430, 60060, 570570, 1169740, 225225, 4862, 291720, 4390386, 17454580, 12317877, 16796, 1385670, 31039008, 211083730, 351683046, 59520825, 58786, 6466460, 205633428, 2198596400, 7034538511, 4304016990
Offset: 0
Triangle starts:
n\g [0] [1] [2] [3] [4] [5]
[0] 1;
[1] 1;
[2] 2; 1;
[3] 5, 10;
[4] 14, 70, 21;
[5] 42, 420, 483;
[6] 132, 2310, 6468, 1485;
[7] 429, 12012, 66066, 56628;
[8] 1430, 60060, 570570, 1169740, 225225;
[9] 4862, 291720, 4390386, 17454580, 12317877;
[10] 16796, 1385670, 31039008, 211083730, 351683046, 59520825;
[11] ...
- Gheorghe Coserea, Rows n = 0..200, flattened
- E. T. Akhmedov and Sh. Shakirov, Gluing of Surfaces with Polygonal Boundaries, arXiv:0712.2448 [math.CO], 2007-2008, see p. 1.
- Sean R. Carrell and Guillaume Chapuy, Simple recurrence formulas to count maps on orientable surfaces, arXiv:1402.6300 [math.CO], 2014.
- Ricky X. F. Chen and Christian M. Reidys, A Combinatorial Identity Concerning Plane Colored Trees and its Applications, Journal of Integer Sequences, Vol. 20 (2017), Article 17.3.7.
- Benoit Collins, Ion Nechita, and Deping Ye, The absolute positive partial transpose property for random induced states, Random Matrices: Theory Appl. 01, 1250002 (2012); arXiv:1108.1935 [math-ph], 2011.
- I. P. Goulden and A. Nica, A direct bijection for the Harer-Zagier formula, J. Comb. Theory, A, 111, No. 2 (2005), 224-238.
- J. L. Harer and D. B. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math., 85, No.3 (1986), 457-486.
- S. Lando and A. Zvonkin, Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, 141, Springer, 2004, p. 157.
- B. Lass, Démonstration combinatoire de la formule de Harer-Zagier, C. R. Acad. Sci. Paris, Serie I, 333, No.3 (2001), 155-160.
- A. Mironov, A. Morozov, A. Popolitov, and Sh. Shakirov, Summing up perturbation series around superintegrable point, arXiv:2401.14392 [hep-th], 2024.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Theory B 13 (1972), 192-218 (Tab. 1).
- Nikolai Wyderka and Andreas Ketterer, Probing the geometry of correlation matrices with randomized measurements, arXiv:2211.09610 [quant-ph], 2022.
- Liang Zhao and Fengyao Yan, Note on Total Positivity for a Class of Recursive Matrices, Journal of Integer Sequences, Vol. 19 (2016), Article 16.6.5.
- Jian Zhou, Hermitian One-Matrix Model and KP Hierarchy, arXiv:1809.07951 [math-ph], 2018.
The last entries in the even rows give
A035319.
-
a[n_, g_] := (2n)!/(n+1)!/(n-2g)! Coefficient[Series[(x/2/Tanh[x/2])^(n+1), {x, 0, n}], x, 2g]; Flatten[DeleteCases[#, 0]& /@ Table[a[n, g], {n, 0, 11}, {g, 0, n}]] (* Jean-François Alcover, Aug 30 2011, after E. T. Akhmedov & Sh. Shakirov *)
-
N = 10; F = 1; gmax(n) = n\2;
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x + O('x^(F+1)));
concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))))
\\ Gheorghe Coserea, Mar 16 2016
Comments