Original entry on oeis.org
1, 1, 1, 10, 21, 483, 1485, 56628, 225225, 12317877, 59520825, 4304016990, 24325703325, 2208143028375, 14230536445125, 1564439686929000, 11288163762500625, 1463987089109939625, 11665426077721040625, 1749439028845202483250, 15230046989184655753125
Offset: 0
-
a[0] = a[1] = 1;
a[n_] := a[n] = ((4n-2) Mod[n, 2] a[n-1] + (n-1)(2n-3)(2n-1) a[n-2])/(n+1);
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 30 2019, from PARI *)
-
seq(N) = {
my(a = vector(N)); a[1] = a[2] = 1;
for (n = 3, N,
a[n] = ((4*n-2)*(n%2)*a[n-1] + (n-1)*(2*n-3)*(2*n-1)*a[n-2])/(n+1));
concat(1,a);
};
seq(20) \\ Gheorghe Coserea, Jan 20 2017
A035320
Right-hand diagonal of odd numbered rows in A035309.
Original entry on oeis.org
1, 10, 483, 56628, 12317877, 4304016990, 2208143028375, 1564439686929000, 1463987089109939625, 1749439028845202483250, 2599814727071941690276875, 4703355398722212580185337500, 10178412573609612134472323548125, 25964951174281047136977541086063750, 77111791432516504424842576279238829375
Offset: 0
A002802
a(n) = (2*n+3)!/(6*n!*(n+1)!).
Original entry on oeis.org
1, 10, 70, 420, 2310, 12012, 60060, 291720, 1385670, 6466460, 29745716, 135207800, 608435100, 2714556600, 12021607800, 52895074320, 231415950150, 1007340018300, 4365140079300, 18839025605400, 81007810103220, 347176329013800, 1483389769422600
Offset: 0
G.f. = 1 + 10*x + 70*x^2 + 420*x^3 + 2310*x^4 + 12012*x^5 + 60060*x^6 + ...
- C. Jordan, Calculus of Finite Differences. Röttig and Romwalter, Budapest, 1939; Chelsea, NY, 1965, p. 449.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..200
- Cyril Banderier and Michael Wallner, Young Tableaux with Periodic Walls: Counting with the Density Method, Séminaire Lotharingien de Combinatoire, 85B (2021), Art. 47, 12 pp.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See pp. 4, 12.
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus: a compendium of results, Journal of Integer Sequences, Vol. 27 (2024), Article 24.2.6. See p. 9. See also arXiv:2305.01100, 2023. See pp. 9, 19.
- R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv preprint arXiv:1306.4628 [math.CO], 2013.
- R. Cori and G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344.
- Alain Goupil and Gilles Schaeffer, Factoring N-Cycles and Counting Maps of Given Genus, Europ. J. Combinatorics (1998) 19 819-834.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. I, J. Comb. Theory B 13 (1972), 192-218 (Tab.1).
- Liang Zhao and Fengyao Yan, Note on Total Positivity for a Class of Recursive Matrices, Journal of Integer Sequences, Vol. 19 (2016), Article 16.6.5.
- Notes.
-
F:=Factorial;; List([0..25], n-> F(2*n+3)/(6*F(n)*F(n+1)) ); # G. C. Greubel, Jul 20 2019
-
F:=Factorial; [F(2*n+3)/(6*F(n)*F(n+1)): n in [0..25]]; // G. C. Greubel, Jul 20 2019
-
seq(simplify(4^n*hypergeom([-n,-3/2], [1], 1)),n=0..25); # Peter Luschny, Apr 26 2016
-
Table[(2*n+3)!/(6*n!*(n+1)!), {n, 0, 25}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
-
{a(n) = if( n<0, 0, (2*n + 3)! / (6 * n! * (n+1)!))}; /* Michael Somos, Sep 16 2013 */
-
{a(n) = 2^(n+3) * polcoeff( pollegendre(n+4), n) / 3}; /* Michael Somos, Sep 16 2013 */
-
f=factorial; [f(2*n+3)/(6*f(n)*f(n+1)) for n in (0..25)] # G. C. Greubel, Jul 20 2019
A011781
Sextuple factorial numbers: a(n) = Product_{k=0..n-1} (6*k+3).
Original entry on oeis.org
1, 3, 27, 405, 8505, 229635, 7577955, 295540245, 13299311025, 678264862275, 38661097149675, 2435649120429525, 168059789309637225, 12604484198222791875, 1020963220056046141875, 88823800144876014343125, 8260613413473469333910625, 817800727933873464057151875
Offset: 0
Lee D. Killough (killough(AT)wagner.convex.com)
G.f. = 1 + 3*x + 27*x^2 + 405*x^3 + 8505*x^4 + 229635*x^5 + 7577955*x^6 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Fatemeh Bagherzadeh, M. Bremner, and S. Madariaga, Jordan Trialgebras and Post-Jordan Algebras, arXiv:1611.01214 [math.RA], 2016.
- Murray Bremner and Martin Markl, Distributive laws between the Three Graces, arXiv:1809.08191 [math.AT], 2018.
- Bodo Lass, Démonstration combinatoire de la formule de Harer-Zagier, (A combinatorial proof of the Harer-Zagier formula) C. R. Acad. Sci. Paris, Serie I, 333(3) (2001), 155-160.
- Bodo Lass, Démonstration combinatoire de la formule de Harer-Zagier, (A combinatorial proof of the Harer-Zagier formula) C. R. Acad. Sci. Paris, Serie I, Vol. 333, No. 3 (2001), pp. 155-160; alternative link.
- Valery Liskovets, A Note on the Total Number of Double Eulerian Circuits in Multigraphs , Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.5.
-
F:=Factorial;; List([0..20], n-> (3/2)^n*(F(2*n)/F(n)) ); # G. C. Greubel, Aug 20 2019
-
[(3/2)^n*Factorial(2*n)/Factorial(n):n in [0..20]]; // Vincenzo Librandi, May 09 2012
-
Table[Product[6k+3,{k,0,n-1}],{n,0,20}] (* or *) Table[6^(n-1) Pochhammer[ 1/2,n-1],{n,21}] (* Harvey P. Dale, May 09 2012 *)
Table[6^n*Pochhammer[1/2, n], {n,0,20}] (* G. C. Greubel, Aug 20 2019 *)
-
{a(n) = if( n<0, (-1)^n / a(-n), (3/2)^n * (2*n)! / n!)}; /* Michael Somos, Feb 10 2002, revised and extended Michael Somos, Jan 06 2017 */
-
[6^n*rising_factorial(1/2, n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
A269924
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 4.
Original entry on oeis.org
225225, 12317877, 12317877, 351683046, 792534015, 351683046, 7034538511, 26225260226, 26225260226, 7034538511, 111159740692, 600398249550, 993494827480, 600398249550, 111159740692, 1480593013900, 10743797911132, 25766235457300, 25766235457300, 10743797911132, 1480593013900, 17302190625720, 160576594766588, 517592962672296, 750260619502310, 517592962672296, 160576594766588, 17302190625720
Offset: 8
Triangle starts:
n\f [1] [2] [3] [4]
[8] 225225;
[9] 12317877, 12317877;
[10] 351683046, 792534015, 351683046;
[11] 7034538511, 26225260226, 26225260226, 7034538511;
[12] ...
Cf.
A035309,
A269921,
A269922,
A269923,
A269925,
A270406,
A270407,
A270408,
A270409,
A270410,
A270412.
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 4], {n, 8, 14}, {f, 1, n-7}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 14; G = 4; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A269925
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 5.
Original entry on oeis.org
59520825, 4304016990, 4304016990, 158959754226, 354949166565, 158959754226, 4034735959800, 14805457339920, 14805457339920, 4034735959800, 79553497760100, 420797306522502, 691650582088536, 420797306522502, 79553497760100, 1302772718028600, 9220982517965400, 21853758736216200, 21853758736216200, 9220982517965400, 1302772718028600
Offset: 10
Triangle starts:
n\f [1] [2] [3] [4]
[10] 59520825;
[11] 4304016990, 4304016990;
[12] 15895975422, 354949166565, 158959754226;
[13] 4034735959800, 14805457339920, 14805457339920, 4034735959800;
[14] ...
Cf.
A035309,
A269921,
A269922,
A269923,
A269924,
A270406,
A270407,
A270408,
A270409,
A270410,
A270411,
A270412.
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 5], {n, 10, 15}, {f, 1, n-9}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 15; G = 5; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A006298
Number of genus 2 rooted maps with 1 face with n vertices.
Original entry on oeis.org
21, 483, 6468, 66066, 570570, 4390386, 31039008, 205633428, 1293938646, 7808250450, 45510945480, 257611421340, 1422156202740, 7683009544980, 40729207226400, 212347275857640, 1090848505817070, 5530195966465170, 27704671055301240, 137308238124957900, 673903972248687180
Offset: 4
G.f. = 21*x^4 + 483*x^5 + 6468*x^6 + 66066*x^7 + 570570*x^8 + 4390386*x^9 + ...
- J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 475-485.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.
- G. C. Greubel, Table of n, a(n) for n = 4..1000
- Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus: A compendium of results, Journal of Integer Sequences, Vol. 27 (2024), article 24.2.6. See p.19.
- Robert Cori and G Hetyei, Counting partitions of a fixed genus, arXiv preprint arXiv:1710.09992 [math.CO], 2017.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus, J. Comb. Thy B13 (1972), 122-141 and 192-218.
- Liang Zhao and Fengyao Yan, Note on Total Positivity for a Class of Recursive Matrices, Journal of Integer Sequences, Vol. 19 (2016), Article 16.6.5.
- Jean-Bernard Zuber, Counting partitions by genus. I. Genus 0 to 2, Enumer. Comb. Appl. 4 (2) (2024), article #S2R13. See pp. 14-17.
-
gf := 21*x^4*(x + 1)*(1 - 4*x)^(-11/2): ser := series(gf, x, 32):
seq(coeff(ser, x, n), n = 4..24); # Peter Luschny, Mar 07 2024
-
CoefficientList[Series[21*x^4*(1 + x)/Sqrt[(1 - 4*x)^11], {x, 0, 50}]/x^4, x] (* G. C. Greubel, Jan 30 2017 *)
a[n_] := ((-2 + 5 * n) * (2 * n)!)/(1440 * n! * (n - 4)!) (* Robert Coquereaux, Mar 07 2024 *)
-
A006298(n) = if(n<4,0,if(n==4,21,((5*(n-1)+3)*(4*(n-1)+2)*A006298(n-1))/((5*(n-1)-2)*((n-1)-3)))); \\ Joerg Arndt, Apr 07 2013
-
x='x+O('x^66); Vec(21*x^4*(1+x)/sqrt((1-4*x)^11)) \\ Joerg Arndt, Apr 07 2013
A288075
a(n) is the number of rooted maps with n edges and one face on an orientable surface of genus 3.
Original entry on oeis.org
1485, 56628, 1169740, 17454580, 211083730, 2198596400, 20465052608, 174437377400, 1384928666550, 10369994005800, 73920866362200, 505297829133240, 3331309741059300, 21280393666593600, 132216351453357600, 801482122777393200, 4752780295205269470, 27632111202537355800
Offset: 6
-
A000108ser[n_] := (1 - Sqrt[1 - 4*x])/(2*x) + O[x]^(n+1);
A288075ser[n_] := (y = A000108ser[n+1]; -11*y*(y-1)^6*(135*y^4 + 558*y^3 - 400*y^2 - 316*y + 158)/(y-2)^17);
Drop[CoefficientList[A288075ser[20], x], 6] (* Jean-François Alcover, Jun 13 2017, translated from PARI *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288075_ser(N) = {
my(y = A000108_ser(N+1));
-11*y*(y-1)^6*(135*y^4 + 558*y^3 - 400*y^2 - 316*y + 158)/(y-2)^17;
};
Vec(A288075_ser(18))
A035319
Number of rooted maps of genus n with one vertex and one face; the maps are considered on orientable surfaces and contain 2n edges.
Original entry on oeis.org
1, 1, 21, 1485, 225225, 59520825, 24325703325, 14230536445125, 11288163762500625, 11665426077721040625, 15230046989184655753125, 24515740420894935215128125, 47702727710977364941596305625
Offset: 0
- Gheorghe Coserea, Table of n, a(n) for n = 0..200
- Nikita Alexeev and Peter Zograf, Hultman numbers, polygon gluings and matrix integrals, arXiv preprint arXiv:1111.3061 [math.PR], 2011.
- J.-P. Doignon and A. Labarre, On Hultman Numbers, J. Integer Seq., 10 (2007), 13 pages.
- T. R. S. Walsh and A. B. Lehman, Counting rooted maps by genus. I, J. Comb. Theory B 13 (1972), 192-218 (Tab.1).
A270790
Multiplier of polynomial P_n(x) arising from RNA combinatorics.
Original entry on oeis.org
1, 21, 11, 143, 88179, 111435, 111435, 1361270295, 1137235, 9945637, 16009448637, 19293438101, 3607872924887, 2630885818709841, 195084537038811, 45500599374052095, 1472444896343699846295, 1997334750675075735, 145805436799280528655, 107268833547674677179
Offset: 1
-
G = 20; N = 3*G + 1; F = 1; gmax(n) = min(n\2, G);
Q = matrix(N+1, G+1); Qn() = (matsize(Q)[1] - 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, Qn(), for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x + O('x^(F+1)));
Kol(g) = vector(Qn()+2-F-2*g, n, polcoeff(Qget(n+F-2 + 2*g, g), F, 'x));
P(g) = {
my(x = 'x + O('x^(G+2)));
return(Pol(Ser(Kol(g)) * (1-4*x)^(3*g-1/2), 'x));
};
vector(G, g, content(P(g))) \\ Gheorghe Coserea, Apr 17 2016
Showing 1-10 of 11 results.
Comments