cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A035318 Right-hand diagonal of A035309.

Original entry on oeis.org

1, 1, 1, 10, 21, 483, 1485, 56628, 225225, 12317877, 59520825, 4304016990, 24325703325, 2208143028375, 14230536445125, 1564439686929000, 11288163762500625, 1463987089109939625, 11665426077721040625, 1749439028845202483250, 15230046989184655753125
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A035309.

Programs

  • Mathematica
    a[0] = a[1] = 1;
    a[n_] := a[n] = ((4n-2) Mod[n, 2] a[n-1] + (n-1)(2n-3)(2n-1) a[n-2])/(n+1);
    Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Aug 30 2019, from PARI *)
  • PARI
    seq(N) = {
      my(a = vector(N)); a[1] = a[2] = 1;
      for (n = 3, N,
           a[n] = ((4*n-2)*(n%2)*a[n-1] + (n-1)*(2*n-3)*(2*n-1)*a[n-2])/(n+1));
      concat(1,a);
    };
    seq(20)  \\ Gheorghe Coserea, Jan 20 2017

Formula

a(n) = T(n, floor(n/2)), where T(n,g) is defined by A035309. - Gheorghe Coserea, Mar 18 2016

Extensions

More terms from Gheorghe Coserea, Mar 18 2016

A035320 Right-hand diagonal of odd numbered rows in A035309.

Original entry on oeis.org

1, 10, 483, 56628, 12317877, 4304016990, 2208143028375, 1564439686929000, 1463987089109939625, 1749439028845202483250, 2599814727071941690276875, 4703355398722212580185337500, 10178412573609612134472323548125, 25964951174281047136977541086063750, 77111791432516504424842576279238829375
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A035318.

Formula

a(n) = A035318(2*n+1). - Gheorghe Coserea, Mar 18 2016

Extensions

More terms from Gheorghe Coserea, Mar 18 2016
Name clarified by Sean A. Irvine, Jan 12 2025

A002802 a(n) = (2*n+3)!/(6*n!*(n+1)!).

Original entry on oeis.org

1, 10, 70, 420, 2310, 12012, 60060, 291720, 1385670, 6466460, 29745716, 135207800, 608435100, 2714556600, 12021607800, 52895074320, 231415950150, 1007340018300, 4365140079300, 18839025605400, 81007810103220, 347176329013800, 1483389769422600
Offset: 0

Views

Author

Keywords

Comments

For n >= 1 a(n) is also the number of rooted bicolored unicellular maps of genus 1 on n+2 edges. - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 20 2001
a(n) is half the number of (n+2) X 2 Young tableaux with a three horizontal walls between the first and second column. If there is a wall between two cells, the entries may be decreasing; see [Banderier, Wallner 2021], A000984 for one horizontal wall, and A002457 for two. - Michael Wallner, Jan 31 2022
From Robert Coquereaux, Feb 12 2024: (Start)
Call B(p,g) the number of genus g partitions of a set with p elements (genus-dependent Bell number). Up to an appropriate shift the given sequence counts the genus 1 partitions of a set: we have a(n) = B(n+4,1), with a(0)= B(4,1)=1.
When shifted with an offset 4 (i.e., defining b(p)=a(p-4), which starts with 0,0,0,1,10,70, etc., and b(4)=1), the given sequence reads b(p) = (1/( 2^4 3 )) * (1/( (2 p - 1) (2 p - 3))) * (1/(p - 4)!) * (2p)!/p!. In this form it appears as a generalization of Catalan numbers (that indeed count the genus 0 partitions).
Call C[p, [alpha], g] the number of partitions of a set with p elements, of cyclic type [alpha], and of genus g (genus g Faa di Bruno coefficients of type [alpha]). Up to an appropriate shift the given sequence also counts the genus 1 partitions of p=2k into k parts of length 2, which is then called C[2k, [2^k], 1], and we have a(n) = C[2k, [2^k], 1] for k=n+2.
The two previous interpretations of this sequence, leading to a(n) = B(n+4, 1) and to a(n) = C[2(n+2), [2^(n+2)], 1] are not related in any obvious way. (End)

Examples

			G.f. = 1 + 10*x + 70*x^2 + 420*x^3 + 2310*x^4 + 12012*x^5 + 60060*x^6 + ...
		

References

  • C. Jordan, Calculus of Finite Differences. Röttig and Romwalter, Budapest, 1939; Chelsea, NY, 1965, p. 449.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A035309, A000108 (for genus 0 maps), A046521 (third column).
Column g=1 of A370235.

Programs

  • GAP
    F:=Factorial;; List([0..25], n-> F(2*n+3)/(6*F(n)*F(n+1)) ); # G. C. Greubel, Jul 20 2019
  • Magma
    F:=Factorial; [F(2*n+3)/(6*F(n)*F(n+1)): n in [0..25]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    seq(simplify(4^n*hypergeom([-n,-3/2], [1], 1)),n=0..25); # Peter Luschny, Apr 26 2016
  • Mathematica
    Table[(2*n+3)!/(6*n!*(n+1)!), {n, 0, 25}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
  • PARI
    {a(n) = if( n<0, 0, (2*n + 3)! / (6 * n! * (n+1)!))}; /* Michael Somos, Sep 16 2013 */
    
  • PARI
    {a(n) = 2^(n+3) * polcoeff( pollegendre(n+4), n) / 3}; /* Michael Somos, Sep 16 2013 */
    
  • Sage
    f=factorial; [f(2*n+3)/(6*f(n)*f(n+1)) for n in (0..25)] # G. C. Greubel, Jul 20 2019
    

Formula

G.f.: (1 - 4*x)^(-5/2) = 1F0(5/2;;4x).
Asymptotic expression for a(n) is a(n) ~ (n+2)^(3/2) * 4^(n+2) / (sqrt(Pi) * 48).
a(n) = Sum_{a+b+c+d+e=n} f(a)*f(b)*f(c)*f(d)*f(e) with f(n) = binomial(2n, n) = A000984(n). - Philippe Deléham, Jan 22 2004
a(n-1) = (1/4)*Sum_{k=1..n} k*(k+1)*binomial(2*k, k). - Benoit Cloitre, Mar 20 2004
a(n) = A051133(n+1)/3 = A000911(n)/6. - Zerinvary Lajos, Jun 02 2007
From Rui Duarte, Oct 08 2011: (Start)
Also convolution of A000984 with A002697, also convolution of A000302 with A002457.
a(n) = ((2n+3)(2n+1)/(3*1)) * binomial(2n, n).
a(n) = binomial(2n+4, 4) * binomial(2n, n) / binomial(n+2, 2).
a(n) = binomial(n+2, 2) * binomial(2n+4, n+2) / binomial(4, 2).
a(n) = binomial(2n+4, n+2) * (n+2)*(n+1) / 12. (End)
D-finite with recurrence: n*a(n) - 2*(2*n+3)*a(n-1) = 0. - R. J. Mathar, Jan 31 2014
a(n) = 4^n*hypergeom([-n,-3/2], [1], 1). - Peter Luschny, Apr 26 2016
Boas-Buck recurrence: a(n) = (10/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, a(0) = 1. Proof from a(n) = A046521(n+2, 2). See a comment there. - Wolfdieter Lang, Aug 10 2017
a(n) = (-4)^n*binomial(-5/2, n). - Peter Luschny, Oct 23 2018
Sum_{n>=0} 1/a(n) = 12 - 2*sqrt(3)*Pi. - Amiram Eldar, Oct 13 2020
E.g.f.: (1/12) exp(2 x) x^2 BesselI[2, 2 x]. - Robert Coquereaux, Feb 12 2024

A011781 Sextuple factorial numbers: a(n) = Product_{k=0..n-1} (6*k+3).

Original entry on oeis.org

1, 3, 27, 405, 8505, 229635, 7577955, 295540245, 13299311025, 678264862275, 38661097149675, 2435649120429525, 168059789309637225, 12604484198222791875, 1020963220056046141875, 88823800144876014343125, 8260613413473469333910625, 817800727933873464057151875
Offset: 0

Views

Author

Lee D. Killough (killough(AT)wagner.convex.com)

Keywords

Comments

Total number of Eulerian circuits in rooted labeled multigraphs with n edges. - Valery A. Liskovets, Apr 07 2002
Number of self-avoiding planar walks starting at (0,0), ending at (n,0), remaining in the east quadrant {(x,y): x >= |y|} and using steps (0,1), (0,-1), (1,1), (-1,-1), and (1,0). - Alois P. Heinz, Oct 13 2016

Examples

			G.f. = 1 + 3*x + 27*x^2 + 405*x^3 + 8505*x^4 + 229635*x^5 + 7577955*x^6 + ...
		

Crossrefs

Programs

  • GAP
    F:=Factorial;; List([0..20], n-> (3/2)^n*(F(2*n)/F(n)) ); # G. C. Greubel, Aug 20 2019
  • Magma
    [(3/2)^n*Factorial(2*n)/Factorial(n):n in [0..20]]; // Vincenzo Librandi, May 09 2012
    
  • Mathematica
    Table[Product[6k+3,{k,0,n-1}],{n,0,20}] (* or *) Table[6^(n-1) Pochhammer[ 1/2,n-1],{n,21}] (* Harvey P. Dale, May 09 2012 *)
    Table[6^n*Pochhammer[1/2, n], {n,0,20}] (* G. C. Greubel, Aug 20 2019 *)
  • PARI
    {a(n) = if( n<0, (-1)^n / a(-n), (3/2)^n * (2*n)! / n!)}; /* Michael Somos, Feb 10 2002, revised and extended Michael Somos, Jan 06 2017 */
    
  • Sage
    [6^n*rising_factorial(1/2, n) for n in (0..20)] # G. C. Greubel, Aug 20 2019
    

Formula

E.g.f.: (1-6*x)^(-1/2).
a(n) = 3^n*(2*n-1)!!.
G.f.: 1/(1-3*x/(1-6*x/(1-9*x/(1-12*x/(1-15*x/(1-18*x/(1-21*x/(1-24*x/(1-... (continued fraction). - Philippe Deléham, Jan 08 2012
a(n) = (-3)^n*Sum_{k=0..n} 2^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. [Mircea Merca, May 03 2012]
G.f.: T(0), where T(k) = 1 - 3*x*(k+1)/( 3*x*(k+1) - 1/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 24 2013
a(n) = 6^n * gamma(n + 1/2) / sqrt(Pi). - Daniel Suteu, Jan 06 2017
0 = a(n)*(+6*a(n+1) - a(n+2)) + a(n+1)*(+a(n+1)) and a(n) = (-1)^n / a(-n) for all n in Z. - Michael Somos, Jan 06 2017
D-finite with recurrence: a(n) +3*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 20 2018
From Amiram Eldar, Feb 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 1 + exp(1/6)*sqrt(Pi/6)*erf(1/sqrt(6)), where erf is the error function.
Sum_{n>=0} (-1)^n/a(n) = 1 - exp(-1/6)*sqrt(Pi/6)*erfi(1/sqrt(6)), where erfi is the imaginary error function. (End)

A269924 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 4.

Original entry on oeis.org

225225, 12317877, 12317877, 351683046, 792534015, 351683046, 7034538511, 26225260226, 26225260226, 7034538511, 111159740692, 600398249550, 993494827480, 600398249550, 111159740692, 1480593013900, 10743797911132, 25766235457300, 25766235457300, 10743797911132, 1480593013900, 17302190625720, 160576594766588, 517592962672296, 750260619502310, 517592962672296, 160576594766588, 17302190625720
Offset: 8

Views

Author

Gheorghe Coserea, Mar 15 2016

Keywords

Comments

Row n contains n-7 terms.

Examples

			Triangle starts:
n\f  [1]           [2]           [3]           [4]
[8]  225225;
[9]  12317877,     12317877;
[10] 351683046,    792534015,    351683046;
[11] 7034538511,   26225260226,  26225260226,  7034538511;
[12] ...
		

Crossrefs

Columns f=1-10 give: A288271 f=1, A288272 f=2, A288273 f=3, A288274 f=4, A288275 f=5, A288276 f=6, A288277 f=7, A288278 f=8, A288279 f=9, A288280 f=10.
Row sums give A215402 (column 4 of A269919).

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    Table[Q[n, f, 4], {n, 8, 14}, {f, 1, n-7}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
  • PARI
    N = 14; G = 4; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

A269925 Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 5.

Original entry on oeis.org

59520825, 4304016990, 4304016990, 158959754226, 354949166565, 158959754226, 4034735959800, 14805457339920, 14805457339920, 4034735959800, 79553497760100, 420797306522502, 691650582088536, 420797306522502, 79553497760100, 1302772718028600, 9220982517965400, 21853758736216200, 21853758736216200, 9220982517965400, 1302772718028600
Offset: 10

Views

Author

Gheorghe Coserea, Mar 15 2016

Keywords

Comments

Row n contains n-9 terms.

Examples

			Triangle starts:
n\f  [1]             [2]             [3]             [4]
[10] 59520825;
[11] 4304016990,     4304016990;
[12] 15895975422,    354949166565,   158959754226;
[13] 4034735959800,  14805457339920, 14805457339920, 4034735959800;
[14] ...
		

Crossrefs

Rooted maps of genus 5 with n edges and f faces for 1<=f<=10: A288281 f=1, A288282 f=2, A288283 f=3, A288284 f=4, A288285 f=5, A288286 f=6, A288287 f=7, A288288 f=8, A288289 f=9, A288290 f=10.
Row sums give A238355 (column 5 of A269919).

Programs

  • Mathematica
    Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
    Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1)(2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
    Table[Q[n, f, 5], {n, 10, 15}, {f, 1, n-9}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
  • PARI
    N = 15; G = 5; gmax(n) = min(n\2, G);
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x);
    concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))

A006298 Number of genus 2 rooted maps with 1 face with n vertices.

Original entry on oeis.org

21, 483, 6468, 66066, 570570, 4390386, 31039008, 205633428, 1293938646, 7808250450, 45510945480, 257611421340, 1422156202740, 7683009544980, 40729207226400, 212347275857640, 1090848505817070, 5530195966465170, 27704671055301240, 137308238124957900, 673903972248687180
Offset: 4

Views

Author

Keywords

Comments

Call C(p,[alpha],g) the number of partitions of the cyclically ordered set [p], of cyclic type [alpha], and of genus g (genus g Faa di Bruno coefficients of type [alpha]). The number C(2n,[2^n],g) of genus g partitions of the set [2n] into n blocks of length 2 is given by the coefficient of u^(2g) in the power series expansion of ((2*k)!/((k+1)!*(k-2g)!))*((u/2)/tanh(u/2))^(k+1) about the point u=0 [Harer-Zagier]. The given sequence a(n) is C(2n,[2^n],2), or, equivalently, it is the number of genus 2 partitions of the set [2n] into n parts with no singletons; it vanishes for n < 4 and a(4)=21. - Robert Coquereaux, Mar 07 2024

Examples

			G.f. = 21*x^4 + 483*x^5 + 6468*x^6 + 66066*x^7 + 570570*x^8 + 4390386*x^9 + ...
		

References

  • J. Harer and D. Zagier, The Euler characteristic of the moduli space of curves, Invent. Math. 85 (1986) 475-485.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • T. R. S. Walsh, Combinatorial Enumeration of Non-Planar Maps. Ph.D. Dissertation, Univ. of Toronto, 1971.

Crossrefs

Cf. A035309.
Cf. A000108 for C(2n, [2^n], 0) and A002802 for C(2n, [2^n], 1).

Programs

  • Maple
    gf := 21*x^4*(x + 1)*(1 - 4*x)^(-11/2): ser := series(gf, x, 32):
    seq(coeff(ser, x, n), n = 4..24);  # Peter Luschny, Mar 07 2024
  • Mathematica
    CoefficientList[Series[21*x^4*(1 + x)/Sqrt[(1 - 4*x)^11], {x, 0, 50}]/x^4, x] (* G. C. Greubel, Jan 30 2017 *)
    a[n_] := ((-2 + 5 * n) * (2 * n)!)/(1440 * n! * (n - 4)!) (* Robert Coquereaux, Mar 07 2024 *)
  • PARI
    A006298(n) = if(n<4,0,if(n==4,21,((5*(n-1)+3)*(4*(n-1)+2)*A006298(n-1))/((5*(n-1)-2)*((n-1)-3)))); \\ Joerg Arndt, Apr 07 2013
    
  • PARI
    x='x+O('x^66);  Vec(21*x^4*(1+x)/sqrt((1-4*x)^11)) \\ Joerg Arndt, Apr 07 2013

Formula

D-finite with recurrence a(n+1) = ((5*n+3)*(4n*+2)*a(n))/((5*n-2)(n-3)).
G.f.: 21*x^4*(1+x)/sqrt((1-4*x)^11). a(n) = 21 * (A020922(n-4) + A020922(n-3)). - Ralf Stephan, Mar 13 2004 (g.f. corrected by Joerg Arndt, Apr 07 2013)
0 = a(n)*(+16*a(n+1) +62*a(n+2) +6*a(n+3)) +a(n+1)*(-38*a(n+1) -5*a(n+2) +17*a(n+3)) +a(n+2)*(-23*a(n+2) +a(n+3)) for all n in Z. - Michael Somos, Mar 30 2016
a(n) ~ n^(9/2) * 2^(2*n-5) / (9*sqrt(Pi)). - Vaclav Kotesovec, Mar 30 2016
a(n) = ((-2+5*n)*(2*n)!)/(1440*n!*(n-4)!) for n >= 4. - Robert Coquereaux, Mar 07 2024

A288075 a(n) is the number of rooted maps with n edges and one face on an orientable surface of genus 3.

Original entry on oeis.org

1485, 56628, 1169740, 17454580, 211083730, 2198596400, 20465052608, 174437377400, 1384928666550, 10369994005800, 73920866362200, 505297829133240, 3331309741059300, 21280393666593600, 132216351453357600, 801482122777393200, 4752780295205269470, 27632111202537355800
Offset: 6

Views

Author

Gheorghe Coserea, Jun 07 2017

Keywords

Crossrefs

Rooted maps of genus 3 with n edges and f faces for 1<=f<=10: this sequence, A288076 f=2, A288077 f=3, A288078 f=4, A288079 f=5, A288080 f=6, A288081 f=7, A288262 f=8, A288263 f=9, A288264 f=10.
Column 1 of A269923, column 3 of A035309.
Cf. A000108.

Programs

  • Mathematica
    A000108ser[n_] := (1 - Sqrt[1 - 4*x])/(2*x) + O[x]^(n+1);
    A288075ser[n_] := (y = A000108ser[n+1]; -11*y*(y-1)^6*(135*y^4 + 558*y^3 - 400*y^2 - 316*y + 158)/(y-2)^17);
    Drop[CoefficientList[A288075ser[20], x], 6] (* Jean-François Alcover, Jun 13 2017, translated from PARI *)
  • PARI
    A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
    A288075_ser(N) = {
      my(y = A000108_ser(N+1));
      -11*y*(y-1)^6*(135*y^4 + 558*y^3 - 400*y^2 - 316*y + 158)/(y-2)^17;
    };
    Vec(A288075_ser(18))

A035319 Number of rooted maps of genus n with one vertex and one face; the maps are considered on orientable surfaces and contain 2n edges.

Original entry on oeis.org

1, 1, 21, 1485, 225225, 59520825, 24325703325, 14230536445125, 11288163762500625, 11665426077721040625, 15230046989184655753125, 24515740420894935215128125, 47702727710977364941596305625
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of 2-permutations in Sym(4n-1), for n>1 (see Doignon and Labarre). - Anthony Labarre, Jun 19 2007

Crossrefs

Right-hand diagonal of A035309.
Cf. A035309.

Programs

Formula

a(n) = A035318(2*n). - Valery A. Liskovets, Apr 13 2006
It appears that this is given by the formula (4n)!/2^{2n}(2n+1)! = (4n-1)!!/(2n+1). (This sequence arose -- conjecturally, but it shouldn't be too hard to make it rigorous -- as the unique nontrivial Betti number of a certain poset associated to the hyperoctahedral group.) - Eric M. Rains (rains(AT)caltech.edu), Jan 24 2006
a(n) = (4n)!/(2^(2n)(2n+1)!) = (4n-1)!!/(2n+1) = A001147(2n)/(2n+1). - Valery A. Liskovets, Apr 13 2006

Extensions

More terms from Valery A. Liskovets, Apr 13 2006

A270790 Multiplier of polynomial P_n(x) arising from RNA combinatorics.

Original entry on oeis.org

1, 21, 11, 143, 88179, 111435, 111435, 1361270295, 1137235, 9945637, 16009448637, 19293438101, 3607872924887, 2630885818709841, 195084537038811, 45500599374052095, 1472444896343699846295, 1997334750675075735, 145805436799280528655, 107268833547674677179
Offset: 1

Views

Author

N. J. A. Sloane, Mar 28 2016

Keywords

Crossrefs

Programs

  • PARI
    G = 20; N = 3*G + 1; F = 1; gmax(n) = min(n\2, G);
    Q = matrix(N+1, G+1); Qn() = (matsize(Q)[1] - 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, Qn(), for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x + O('x^(F+1)));
    Kol(g) = vector(Qn()+2-F-2*g, n, polcoeff(Qget(n+F-2 + 2*g, g), F, 'x));
    P(g) = {
      my(x = 'x + O('x^(G+2)));
      return(Pol(Ser(Kol(g)) * (1-4*x)^(3*g-1/2), 'x));
    };
    vector(G, g, content(P(g)))  \\ Gheorghe Coserea, Apr 17 2016

Formula

a(g) * P_g(0) = A035319(g) = (4*g-1)!!/(2*g+1), where P_g(x) is the polynomial associated with row g of the triangle A270791.

Extensions

More terms from Gheorghe Coserea, Apr 17 2016
Showing 1-10 of 11 results. Next