A269923
Triangle read by rows: T(n,f) is the number of rooted maps with n edges and f faces on an orientable surface of genus 3.
Original entry on oeis.org
1485, 56628, 56628, 1169740, 2668750, 1169740, 17454580, 66449432, 66449432, 17454580, 211083730, 1171704435, 1955808460, 1171704435, 211083730, 2198596400, 16476937840, 40121261136, 40121261136, 16476937840, 2198596400, 20465052608, 196924458720, 647739636160
Offset: 6
Triangle starts:
n\f [1] [2] [3] [4] [5]
[6] 1485;
[7] 56628, 56628;
[8] 1169740, 2668750, 1169740;
[9] 17454580, 66449432, 66449432, 17454580;
[10] 211083730, 1171704435, 1955808460, 1171704435, 211083730;
[11] ...
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n<0 || f<0 || g<0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n+1)((2n-1)/3 Q[n-1, f, g] + (2n-1)/3 Q[n - 1, f-1, g] + (2n-3)(2n-2)(2n-1)/12 Q[n-2, f, g-1] + 1/2 Sum[l = n-k; Sum[v = f-u; Sum[j = g-i; Boole[l >= 1 && v >= 1 && j >= 0] (2k-1) (2l-1) Q[k-1, u, i] Q[l-1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
Table[Q[n, f, 3], {n, 6, 12}, {f, 1, n-5}] // Flatten (* Jean-François Alcover, Aug 10 2018 *)
-
N = 12; G = 3; gmax(n) = min(n\2, G);
Q = matrix(N + 1, N + 1);
Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
Qset(n, g, v) = { Q[n+1, g+1] = v };
Quadric({x=1}) = {
Qset(0, 0, x);
for (n = 1, length(Q)-1, for (g = 0, gmax(n),
my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
(2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
};
Quadric('x);
concat(apply(p->Vecrev(p/'x), vector(N+1 - 2*G, n, Qget(n-1 + 2*G, G))))
A288263
a(n) is the number of rooted maps with n edges and 9 faces on an orientable surface of genus 3.
Original entry on oeis.org
1384928666550, 176357530955320, 10933959720960760, 447708887118504600, 13767319160210071404, 341505418008822731328, 7151648337964982801760, 130468023103972196647776, 2121333601263313429701060, 31276917257222840819283888, 423834000658990977141751472, 5335660046838578422013157200
Offset: 14
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 9, 3];
Table[a[n], {n, 14, 25}] (* Jean-François Alcover, Oct 17 2018 *)
A288264
a(n) is the number of rooted maps with n edges and 10 faces on an orientable surface of genus 3.
Original entry on oeis.org
10369994005800, 1461629029629340, 99727841192820016, 4470547991985864322, 149789855223187292608, 4031165546220945277040, 91230456810047671200128, 1792206112041706943912462, 31276917257222840819283888, 493477269339182312960416344, 7136207296287499744197970400, 95626920613336304647976494116
Offset: 15
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 10, 3];
Table[a[n], {n, 15, 26}] (* Jean-François Alcover, Oct 17 2018 *)
A288076
a(n) is the number of rooted maps with n edges and 2 faces on an orientable surface of genus 3.
Original entry on oeis.org
56628, 2668750, 66449432, 1171704435, 16476937840, 196924458720, 2079913241120, 19925913354061, 176357530955320, 1461629029629340, 11460411934448048, 85694099173907510, 614960028331370816, 4257157940494918160, 28549761695867223680, 186131532080726321441, 1183191417356212860200, 7351865732351585503652
Offset: 7
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 2, 3];
Table[a[n], {n, 7, 24}] (* Jean-François Alcover, Oct 17 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288076_ser(N) = {
my(y = A000108_ser(N+1));
y*(y-1)^7*(1485*y^6 + 111969*y^5 + 453295*y^4 - 389693*y^3 - 443894*y^2 + 361702*y - 38236)/(y-2)^20;
};
Vec(A288076_ser(18))
A288077
a(n) is the number of rooted maps with n edges and 3 faces on an orientable surface of genus 3.
Original entry on oeis.org
1169740, 66449432, 1955808460, 40121261136, 647739636160, 8789123742880, 104395235785256, 1115525500250760, 10933959720960760, 99727841192820016, 855779329367736840, 6968569097113244096, 54217755730994858080, 405300088876353160320, 2924455840981270327952, 20446207814548586119000, 138958722742591452843432
Offset: 8
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 3, 3];
Table[a[n], {n, 8, 25}] (* Jean-François Alcover, Oct 17 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288077_ser(N) = {
my(y = A000108_ser(N+1));
-4*y*(y-1)^8*(28314*y^7 + 1229985*y^6 + 4821650*y^5 - 4914053*y^4 - 6967314*y^3 + 7429165*y^2 - 1071576*y - 263736)/(y-2)^23;
};
Vec(A288077_ser(17))
A288078
a(n) is the number of rooted maps with n edges and 4 faces on an orientable surface of genus 3.
Original entry on oeis.org
17454580, 1171704435, 40121261136, 945068384880, 17326957790896, 264477214235234, 3505018618003600, 41491242915292306, 447708887118504600, 4470547991985864322, 41790549086980226368, 369061676845849000520, 3101645444966543203008, 24954084939131951164980, 193145505023621965434976, 1444143475412182351017494, 10467259286591304015806600
Offset: 9
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 4, 3];
Table[a[n], {n, 9, 26}] (* Jean-François Alcover, Oct 17 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288078_ser(N) = {
my(y = A000108_ser(N+1));
y*(y-1)^9*(5008230*y^8 + 164100330*y^7 + 620429875*y^6 - 742482075*y^5 - 1203385090*y^4 + 1546511666*y^3 - 224365292*y^2 - 189952744*y + 41589680)/(y-2)^26;
};
Vec(A288078_ser(17))
A288079
a(n) is the number of rooted maps with n edges and 5 faces on an orientable surface of genus 3.
Original entry on oeis.org
211083730, 16476937840, 647739636160, 17326957790896, 357391270819604, 6087558311398000, 89390908732820144, 1165172136542282424, 13767319160210071404, 149789855223187292608, 1518921342035154605600, 14492634832409091816640, 131114130730951689447016, 1131791523345860091265696, 9370402052804684247760928
Offset: 10
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 5, 3];
Table[a[n], {n, 10, 27}] (* Jean-François Alcover, Oct 17 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288079_ser(N) = {
my(y = A000108_ser(N+1));
-2*y*(y-1)^10*(83904012*y^9 + 2299548501*y^8 + 8375416306*y^7 - 11663434748*y^6 - 20521873396*y^5 + 30517603222*y^4 - 3781427784*y^3 - 7908127656*y^2 + 2862038656*y - 158105248)/(y-2)^29;
};
Vec(A288079_ser(15))
A288080
a(n) is the number of rooted maps with n edges and 6 faces on an orientable surface of genus 3.
Original entry on oeis.org
2198596400, 196924458720, 8789123742880, 264477214235234, 6087558311398000, 114899070275212424, 1857975645023518752, 26522236056202555206, 341505418008822731328, 4031165546220945277040, 44171448380277095027584, 453764845712090669861060, 4405234525240663358548000, 40682085269643556632419504, 359336179016097679450360000
Offset: 11
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2n - 1)/3 Q[n - 1, f, g] + (2n - 1)/3 Q[n - 1, f - 1, g] + (2n - 3) (2n - 2) (2n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2k - 1) (2l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 6, 3];
Table[a[n], {n, 11, 28}] (* Jean-François Alcover, Oct 17 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288080_ser(N) = {
my(y = A000108_ser(N+1));
2*y*(y-1)^11*(2360692395*y^10 + 57065162931*y^9 + 200199438395*y^8 - 321653197109*y^7 - 594662939878*y^6 + 999754510326*y^5 - 90653073868*y^4 - 435707439920*y^3 + 201952082336*y^2 - 14180151168*y - 3375786240)/(y-2)^32;
};
Vec(A288080_ser(15))
A288081
a(n) is the number of rooted maps with n edges and 7 faces on an orientable surface of genus 3.
Original entry on oeis.org
20465052608, 2079913241120, 104395235785256, 3505018618003600, 89390908732820144, 1857975645023518752, 32904419378927915376, 511895831411154922176, 7151648337964982801760, 91230456810047671200128, 1076401288635137599528944, 11867194568934207062990560
Offset: 12
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 7, 3];
Table[a[n], {n, 12, 27}] (* Jean-François Alcover, Oct 17 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288081_ser(N) = {
my(y = A000108_ser(N+1));
-8*y*(y-1)^12*(14699198844*y^11 + 323418619692*y^10 + 1093150970776*y^9 - 2010290018547*y^8 - 3822380209098*y^7 + 7160304314725*y^6 - 371305853280*y^5 - 4606441266688*y^4 + 2480182576832*y^3 - 129107145168*y^2 - 150618243904*y + 20945187392)/(y-2)^35;
};
Vec(A288081_ser(12))
A288262
a(n) is the number of rooted maps with n edges and 8 faces on an orientable surface of genus 3.
Original entry on oeis.org
174437377400, 19925913354061, 1115525500250760, 41491242915292306, 1165172136542282424, 26522236056202555206, 511895831411154922176, 8640883781524178188980, 130468023103972196647776, 1792206112041706943912462, 22695416350294243544684240, 267740228837597817351215676
Offset: 13
-
Q[0, 1, 0] = 1; Q[n_, f_, g_] /; n < 0 || f < 0 || g < 0 = 0;
Q[n_, f_, g_] := Q[n, f, g] = 6/(n + 1) ((2 n - 1)/3 Q[n - 1, f, g] + (2 n - 1)/3 Q[n - 1, f - 1, g] + (2 n - 3) (2 n - 2) (2 n - 1)/12 Q[n - 2, f, g - 1] + 1/2 Sum[l = n - k; Sum[v = f - u; Sum[j = g - i; Boole[l >= 1 && v >= 1 && j >= 0] (2 k - 1) (2 l - 1) Q[k - 1, u, i] Q[l - 1, v, j], {i, 0, g}], {u, 1, f}], {k, 1, n}]);
a[n_] := Q[n, 8, 3];
Table[a[n], {n, 13, 24}] (* Jean-François Alcover, Oct 17 2018 *)
-
A000108_ser(N) = my(x='x+O('x^(N+1))); (1 - sqrt(1-4*x))/(2*x);
A288262_ser(N) = {
my(y = A000108_ser(N+1));
y*(y-1)^13*(2675326679856*y^12 + 54684388381464*y^11 + 178122315841075*y^10 - 372236561648447*y^9 - 717438005317146*y^8 + 1482970059363466*y^7 - 17264319660476*y^6 - 1294789702753096*y^5 + 770104389507952*y^4 - 4493523304288*y^3 - 105563098094272*y^2 + 24298454684800*y - 895286303488)/(y-2)^38;
};
Vec(A288262_ser(12))
Showing 1-10 of 10 results.
Comments