cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A035309 Triangle read by rows giving number of ways to glue sides of a 2n-gon so as to produce a surface of genus g.

Original entry on oeis.org

1, 1, 2, 1, 5, 10, 14, 70, 21, 42, 420, 483, 132, 2310, 6468, 1485, 429, 12012, 66066, 56628, 1430, 60060, 570570, 1169740, 225225, 4862, 291720, 4390386, 17454580, 12317877, 16796, 1385670, 31039008, 211083730, 351683046, 59520825, 58786, 6466460, 205633428, 2198596400, 7034538511, 4304016990
Offset: 0

Views

Author

Keywords

Comments

Row n contains floor((n+2)/2) terms.
a(n,g) is also the number of unicellular (i.e., 1-faced) rooted maps of genus g with n edges. #(vertices) = n - 2g + 1. Dually, this is the number of 1-vertex maps. Catalan(n)=A000108(n) divides a(n,g)2^g.
From Akhmedov and Shakirov's abstract: By pairwise gluing of sides of a polygon, one produces two-dimensional surfaces with handles and boundaries. We give the number N_{g,L}(n_1, n_2, ..., n_L) of different ways to produce a surface of given genus g with L polygonal boundaries with given numbers of sides n_1, n_2, >..., n_L. Using combinatorial relations between graphs on real two-dimensional surfaces, we derive recursive relations between N_{g,L}. We show that Harer-Zagier numbers appear as a particular case of N_{g,L} and derive a new explicit expression for them. - Jonathan Vos Post, Dec 18 2007

Examples

			Triangle starts:
n\g    [0]        [1]        [2]        [3]        [4]        [5]
[0]    1;
[1]    1;
[2]    2;         1;
[3]    5,         10;
[4]    14,        70,        21;
[5]    42,        420,       483;
[6]    132,       2310,      6468,      1485;
[7]    429,       12012,     66066,     56628;
[8]    1430,      60060,     570570,    1169740,   225225;
[9]    4862,      291720,    4390386,   17454580,  12317877;
[10]   16796,     1385670,   31039008,  211083730, 351683046, 59520825;
[11]   ...
		

Crossrefs

Row sums give A001147(n).
Columns g=0-2 give: A000108, A002802, A006298.
The last entries in the even rows give A035319.

Programs

  • Mathematica
    a[n_, g_] := (2n)!/(n+1)!/(n-2g)! Coefficient[Series[(x/2/Tanh[x/2])^(n+1), {x, 0, n}], x, 2g]; Flatten[DeleteCases[#, 0]& /@ Table[a[n, g], {n, 0, 11}, {g, 0, n}]] (* Jean-François Alcover, Aug 30 2011, after E. T. Akhmedov & Sh. Shakirov *)
  • PARI
    N = 10; F = 1; gmax(n) = n\2;
    Q = matrix(N + 1, N + 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, length(Q)-1, for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x + O('x^(F+1)));
    concat(vector(N+2-F, n, vector(1 + gmax(n-1), g, polcoeff(Qget(n+F-2, g-1), F))))
    \\ Gheorghe Coserea, Mar 16 2016

Formula

Let c be the number of cycles that appear in product of a (2n)-cycle and a product of n disjoint transpositions; genus is g = (n-c+1)/2.
The Harer-Zagier formula: 1 + 2*Sum_{g>=0} Sum_{n>=2*g} a(n,g) * x^(n+1) * y^(n-2*g+1) / (2*n-1)!! = (1+x/(1-x))^y.
Equivalently, for n >= 0, Sum_{g=0..floor(n/2)} a(n,g)*y^(n-2*g+1) = (2*n-1)!! * Sum_{k=0..n} 2^k * C(n,k) * C(y,k+1).
(n+2)*a(n+1,g) = (4*n+2)*a(n,g) + (4*n^3-n)*a(n-1,g-1) for n,g > 0, a(0,0)=1 and a(0,g)=0 for g > 0.
The g.f. for column g > 0 is x^(2*g) * A270790(g) * P_g(x) / (1-4*x)^(3*g-1/2), where P_g(x) is the polynomial associated with row g of the triangle A270791. - Gheorghe Coserea, Apr 17 2016

Extensions

More terms and additional comments and references from Valery A. Liskovets, Apr 13 2006
Offset corrected by Gheorghe Coserea, Mar 17 2016

A185259 Irregular triangle read by rows: coefficients in order of decreasing exponents of polynomials P_g(x) related to Hultman numbers.

Original entry on oeis.org

1, 1, 12, 8, 1, 72, 528, 704, 180, 1, 324, 8760, 53792, 98124, 56160, 8064, 1, 1344, 103040, 1759520, 9936360, 21676144, 19083456, 6356160, 604800, 1, 5436, 1054056, 41312704, 539233128, 2901894144, 7118351104, 8247838464, 4418632656, 988952832, 68428800, 1, 21816, 10106736, 823376896, 21574613676, 235937470944, 1230387808384, 3281254260864, 4608240745104, 3390175943424, 1247151098880, 204083712000, 10897286400
Offset: 1

Views

Author

N. J. A. Sloane, Jan 21 2012

Keywords

Comments

Row n contains 2*n-1 terms.
Evaluating the polynomials at 1 gives A035319.

Examples

			Triangle begins:
[1] 1
[2] 1   12      8
[3] 1   72    528     704     180
[4] 1  324   8760   53792   98124    56160     8064
[5] 1 1344 103040 1759520 9936360 21676144 19083456 6356160 604800
[6] ...
		

Crossrefs

Programs

  • Mathematica
    P[n_, x_] := (f = (1-x)^(4n+1); s = Sum[-StirlingS1[2n+2+k, k+1]/ Binomial[2n+2+k, 2] x^k, {k, 0, 2n-2}]; f s + O[x]^(2n-1) // Normal);
    row[n_] := CoefficientList[P[n, x], x] // Reverse;
    Array[row, 7] // Flatten (* Jean-François Alcover, Sep 05 2018, after Gheorghe Coserea *)
  • PARI
    P(n, v='x) = {
      my(x='x+O('x^(2*n-1)), f=(1-x)^(4*n+1),
         s=sum(k=0, 2*n-2, -stirling(2*n+2+k, k+1, 1)/binomial(2*n+2+k,2)*x^k));
      subst(Pol(f*s, 'x), 'x, v);
    };
    concat(vector(7, n, Vec(P(n))))
    \\ test: N=50; vector(N, n, P(n,1)) == vector(N, n, (4*n)!/((2*n+1)!*4^n))
    \\ Gheorghe Coserea, Jan 30 2018

Extensions

More terms from Gheorghe Coserea, Jan 30 2018

A270790 Multiplier of polynomial P_n(x) arising from RNA combinatorics.

Original entry on oeis.org

1, 21, 11, 143, 88179, 111435, 111435, 1361270295, 1137235, 9945637, 16009448637, 19293438101, 3607872924887, 2630885818709841, 195084537038811, 45500599374052095, 1472444896343699846295, 1997334750675075735, 145805436799280528655, 107268833547674677179
Offset: 1

Views

Author

N. J. A. Sloane, Mar 28 2016

Keywords

Crossrefs

Programs

  • PARI
    G = 20; N = 3*G + 1; F = 1; gmax(n) = min(n\2, G);
    Q = matrix(N+1, G+1); Qn() = (matsize(Q)[1] - 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, Qn(), for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x + O('x^(F+1)));
    Kol(g) = vector(Qn()+2-F-2*g, n, polcoeff(Qget(n+F-2 + 2*g, g), F, 'x));
    P(g) = {
      my(x = 'x + O('x^(G+2)));
      return(Pol(Ser(Kol(g)) * (1-4*x)^(3*g-1/2), 'x));
    };
    vector(G, g, content(P(g)))  \\ Gheorghe Coserea, Apr 17 2016

Formula

a(g) * P_g(0) = A035319(g) = (4*g-1)!!/(2*g+1), where P_g(x) is the polynomial associated with row g of the triangle A270791.

Extensions

More terms from Gheorghe Coserea, Apr 17 2016

A270791 Triangle read by rows: coefficients of polynomials P_n(x) arising from RNA combinatorics.

Original entry on oeis.org

1, 1, 1, 158, 558, 135, 2339, 18378, 13689, 1575, 1354, 18908, 28764, 9660, 675, 617926, 13447818, 34604118, 23001156, 4534875, 218295, 525206428, 16383145284, 63886133214, 70424606988, 26926791930, 3567422250, 127702575, 50531787, 2134308548, 11735772822, 19350632598, 12106771137, 3063221550, 295973325, 8292375
Offset: 1

Views

Author

N. J. A. Sloane, Mar 28 2016

Keywords

Comments

"... polynomials like these with nonnegative integral coefficients might reasonably be expected to be generating polynomials for some as yet unknown fatgraph structure."

Examples

			For n = 3 we have P_3(x) = 158*x^2 + 558*x + 135.
For n = 4 we have P_4(x) = 2339*x^3 + 18378*x^2 + 13689*x + 1575.
Triangle begins:
n\k  [1]        [2]        [3]        [4]        [5]        [6]
[1]  1;
[2]  1,         1;
[3]  158        558,       135;
[4]  2339,      18378,     13689,     1575;
[5]  1354,      18908,     28764,     9660,      675;
[6]  617926,    13447818,  34604118,  23001156,  4534875,   218295;
[7]  ...
		

Crossrefs

Programs

  • PARI
    G = 8; N = 3*G + 1; F = 1; gmax(n) = min(n\2, G);
    Q = matrix(N+1, G+1); Qn() = (matsize(Q)[1] - 1);
    Qget(n, g) = { if (g < 0 || g > n/2, 0, Q[n+1, g+1]) };
    Qset(n, g, v) = { Q[n+1, g+1] = v };
    Quadric({x=1}) = {
      Qset(0, 0, x);
      for (n = 1, Qn(), for (g = 0, gmax(n),
        my(t1 = (1+x)*(2*n-1)/3 * Qget(n-1, g),
           t2 = (2*n-3)*(2*n-2)*(2*n-1)/12 * Qget(n-2, g-1),
           t3 = 1/2 * sum(k = 1, n-1, sum(i = 0, g,
           (2*k-1) * (2*(n-k)-1) * Qget(k-1, i) * Qget(n-k-1, g-i))));
        Qset(n, g, (t1 + t2 + t3) * 6/(n+1))));
    };
    Quadric('x + O('x^(F+1)));
    Kol(g) = vector(Qn()+2-F-2*g, n, polcoeff(Qget(n+F-2 + 2*g, g), F, 'x));
    P(g) = {
      my(x = 'x + O('x^(G+2)));
      return(Pol(Ser(Kol(g)) * (1-4*x)^(3*g-1/2), 'x));
    };
    concat(vector(G, g, Vec(P(g) / content(P(g)))))  \\ Gheorghe Coserea, Apr 17 2016

Formula

The g.f. for column g>0 of triangle A035309 is x^(2*g) * A270790(g) * P_g(x) / (1-4*x)^(3*g-1/2), where P_g(x) is the polynomial associated with row g of the triangle. - Gheorghe Coserea, Apr 17 2016

Extensions

More terms from Gheorghe Coserea, Apr 17 2016

A305872 Number of nonseparable rooted maps of genus n with one vertex and one face.

Original entry on oeis.org

1, 1, 17, 1259, 200589, 54766516, 22839203295, 13532959408258, 10826939105517381, 11256605684271733244, 14762470788227855508388, 23845795018908512860754771, 46527914721396710095597849515, 107904469663880176355586920421756, 293401777662120053352713701982623322
Offset: 0

Views

Author

R. J. Mathar, Jun 12 2018

Keywords

Crossrefs

Cf. A035319.

Programs

  • Maple
    g := 1+x ;
    for itr from 2 to 14 do
        g := g+a*x^itr;
        Ax := add(A035319(i)*x^i,i=0..itr+1) ;
        x*Ax^4 ;
        z := subs(x=%,g)-Ax ;
        z := expand(z) ;
        z := taylor(z,x=0,itr+1) ;
        z := convert(z,polynom) ;
        aa := solve(z,a) ;
        g := g-a*x^itr+aa*x^itr ;
        print(g) ;
    end do:
  • PARI
    seq(N) = {
      my(s = 1+'x*Ser(vector(N, n, (4*n)!/((2*n+1)!*4^n))));
      Vec(subst(s, 'x, serreverse('x*s^4)));
    };
    seq(14) \\ Gheorghe Coserea, Jun 13 2018

Formula

The g.f. A(x) satisfies A035319(x) = A[x*(A035319(x)^4)], where A035319 is the o.g.f. of A035319.

A118450 Number of rooted n-edge one-vertex one-face maps on a non-orientable surface (of genus n).

Original entry on oeis.org

1, 4, 41, 488, 8229, 164892, 4016613, 112818960
Offset: 1

Views

Author

Valery A. Liskovets, May 04 2006

Keywords

Comments

One-vertex one-face maps on orientable surfaces are counted by A035319.

References

  • E. R. Canfield, Calculating the number of rooted maps on a surface, Congr. Numerantium, 76 (1990), 21-34.
  • D. M. Jackson and T. I. Visentin, An atlas of the smaller maps in orientable and nonorientable surfaces. CRC Press, Boca Raton, 2001.

Crossrefs

Main diagonal of A267180.
Cf. A035319.

Extensions

a(7)-a(8) added by Andrew Howroyd, Jan 16 2022

A347951 a(n) = number of maximal chord diagrams by genus d^(||)_2n.

Original entry on oeis.org

1, 5, 41, 509, 8229, 166377, 4016613, 113044185, 3630535785, 131095612845, 5256401729985, 231748716159765, 11142710564597325, 580259659715478225, 32535080119520689725
Offset: 1

Views

Author

Michael De Vlieger, Nov 02 2021

Keywords

Comments

Also, number of rooted maps with one face, one vertex and n edges on both orientable and non-orientable surfaces.

Crossrefs

Formula

Ledoux's article gives a five-term recurrence for related polynomials.
Showing 1-7 of 7 results.