A002697
a(n) = n*4^(n-1).
Original entry on oeis.org
0, 1, 8, 48, 256, 1280, 6144, 28672, 131072, 589824, 2621440, 11534336, 50331648, 218103808, 939524096, 4026531840, 17179869184, 73014444032, 309237645312, 1305670057984, 5497558138880, 23089744183296
Offset: 0
From _Bernard Schott_, Jan 04 2013: (Start)
See the comment about intersection of X and Y.
If A={b,c}, then in P(A) we have:
{b}Inter{b}={b},
{b}Inter{b,c}={b},
{c}Inter{c}={c},
{c}Inter{b,c}={c},
{b,c}Inter{b}={b},
{b,c}Inter{c}={c},
{b,c}Inter{b,c}={b,c}
and : #{b}+ #{b}+ #{c}+ #{c}+ #{b}+ #{c}+ #{b,c} = 8 = 2*4^(2-1) = a(2).
The other intersections are empty.
(End)
- Miklos Bona, Combinatorics of Permutations, Chapman and Hall/CRC, 2004, pp. 1, 43, 64.
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 516.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Danny Rorabaugh, Table of n, a(n) for n = 0..1000
- F. Ellermann, Illustration of binomial transforms
- Samuele Giraudo, Pluriassociative algebras I: The pluriassociative operad, arXiv:1603.01040 [math.CO], 2016.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 414
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Constantinos Kourouzides, A double counting argument on the hypercube graph
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Hypercube Graph
- Eric Weisstein's World of Mathematics, Wiener Index
- Index entries for linear recurrences with constant coefficients, signature (8,-16).
Cf.
A000051,
A000302,
A000984,
A001792,
A002457,
A002699,
A027656,
A038231,
A082134,
A083672,
A125145,
A128235,
A133224,
A212698.
-
A002697:=1/(4*z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
A002697:=n->n*4^(n-1): seq(A002697(n), n=0..30); # Wesley Ivan Hurt, Mar 30 2014
-
Table[n 4^(n - 1), {n, 0, 30}] (* Harvey P. Dale, Jan 18 2012 *)
LinearRecurrence[{8, -16}, {0, 1}, 30] (* Harvey P. Dale, Jan 18 2012 *)
CoefficientList[Series[x/(1 - 4 x)^2, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
-
a(n)=if(n<0,0,n*4^(n-1))
-
[n*4^(n-1) for n in range(22)] # Danny Rorabaugh, Mar 27 2015
A212704
a(n) = 9*n*10^(n-1).
Original entry on oeis.org
9, 180, 2700, 36000, 450000, 5400000, 63000000, 720000000, 8100000000, 90000000000, 990000000000, 10800000000000, 117000000000000, 1260000000000000, 13500000000000000, 144000000000000000, 1530000000000000000, 16200000000000000000, 171000000000000000000, 1800000000000000000000
Offset: 1
-
Rest@ CoefficientList[Series[9 x/(10 x - 1)^2, {x, 0, 18}], x] (* or *)
Array[9 # 10^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
a(n) = mtrans(n, 10);
-
def a(n): return 9*n*10**(n-1)
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Nov 14 2022
A212697
a(n) = 2*n*3^(n-1).
Original entry on oeis.org
2, 12, 54, 216, 810, 2916, 10206, 34992, 118098, 393660, 1299078, 4251528, 13817466, 44641044, 143489070, 459165024, 1463588514, 4649045868, 14721978582, 46490458680, 146444944842, 460255540932, 1443528742014, 4518872583696, 14121476824050, 44059007691036
Offset: 1
n=2, b=3, S={00, 01, 02, 10, 11, 12, 20, 21, 22}, main transitions = {(00,01), (00,10), (01,02), (01,12), (02,12), (10,11), (10,20), (11,12), (11,21), (12,22), (20,21), (21,22)}, main transitions count = 12.
- M. H. Levitt, Spin Dynamics, Basics of Nuclear Magnetic Resonance, 2nd Edition, John Wiley & Sons, 2007, Section 6 (Mathematical techniques).
- J. A. Pople, W. G. Schneider, H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill, 1959, Chapter 6.
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- John Rafael M. Antalan and Francis Joseph H. Campeña, Distance eigenvalues and forwarding indices of dimension-regular generalized recursive circulant graph of order power of two and three, arXiv:2009.11608[math.CO], 2020.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (6,-9).
Cf.
A212698,
A212699,
A212700,
A212701,
A212702,
A212703,
A212704 (b = 4, 5, 6, 7, 8, 9, 10).
-
List([1..30], n-> 2*3^(n-1)*n) # G. C. Greubel, Jun 08 2019
-
[2*3^(n-1)*n: n in [1..30]]; // G. C. Greubel, Jun 08 2019
-
A212697:=n->2*n*3^(n-1): seq(A212697(n), n=1..30); # Wesley Ivan Hurt, Mar 01 2015
-
Table[Sum[Binomial[n, j] j 2^j, {j, n}], {n, 30}] (* Geoffrey Critzer, Mar 01 2015 *)
Table[2*3^(n-1)*n, {n,30}] (* G. C. Greubel, Jun 08 2019 *)
-
mtrans(n,b) = n*(b-1)*b^(n-1);
for (n=1,100,write("b212697.txt",n," ",mtrans(n,3)))
-
[2*3^(n-1)*n for n in (1..30)] # G. C. Greubel, Jun 08 2019
A212700
a(n) = 5*n*6^(n-1).
Original entry on oeis.org
5, 60, 540, 4320, 32400, 233280, 1632960, 11197440, 75582720, 503884800, 3325639680, 21767823360, 141490851840, 914248581120, 5877312307200, 37614798766080, 239794342133760, 1523399350026240, 9648195883499520, 60935974001049600, 383896636206612480, 2413064570441564160
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212699,
A212701,
A212702,
A212703,
A212704 (b = 2, 3, 4, 5, 7, 8, 9, 10).
-
Rest@ CoefficientList[Series[5 x/(6 x - 1)^2, {x, 0, 18}], x] (* or *)
Array[5 # 6^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212700.txt", n, " ", mtrans(n, 6)))
A002699
a(n) = n*2^(2*n-1).
Original entry on oeis.org
0, 2, 16, 96, 512, 2560, 12288, 57344, 262144, 1179648, 5242880, 23068672, 100663296, 436207616, 1879048192, 8053063680, 34359738368, 146028888064, 618475290624, 2611340115968, 10995116277760, 46179488366592, 193514046488576
Offset: 0
- C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 518.
- A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Rebecca Bourn and William Q. Erickson, A palindromic polynomial connecting the earth mover's distance to minuscule lattices of Type A, arXiv:2307.02652 [math.CO], 2023.
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- C. Lanczos, Applied Analysis (Annotated scans of selected pages)
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Index entries for sequences related to Chebyshev polynomials.
- Index entries for linear recurrences with constant coefficients, signature (8,-16).
-
[n*2^(2*n-1): n in [0..30]]; /* or */ I:=[0, 2]; [n le 2 select I[n] else 8*Self(n-1)-16*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Mar 20 2013
-
A002699 := n->n*2^(2*n-1);
A002699:=2*z/(4*z-1)**2; # conjectured by Simon Plouffe in his 1992 dissertation
-
Table[(n 2^(2 n - 1)), {n, 0, 30}] (* Vincenzo Librandi, Mar 20 2013 *)
LinearRecurrence[{8,-16},{0,2},30] (* Harvey P. Dale, Dec 20 2015 *)
-
a(n)=n*2^(2*n-1) \\ Charles R Greathouse IV, Oct 07 2015
A212703
Main transitions in systems of n particles with spin 4.
Original entry on oeis.org
8, 144, 1944, 23328, 262440, 2834352, 29760696, 306110016, 3099363912, 30993639120, 306837027288, 3012581722464, 29372671794024, 284688972772848, 2745215094595320, 26354064908115072, 252010745683850376, 2401514164751985936, 22814384565143866392, 216136274827678734240
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212699,
A212700,
A212701,
A212702,
A212704 (b = 2, 3, 4, 5, 6, 7, 8, 10).
-
LinearRecurrence[{18,-81},{8,144},30] (* Harvey P. Dale, Jun 28 2017 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212703.txt", n, " ", mtrans(n, 9)))
-
Vec(8*x/(9*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
-
a(n)=8*n*9^(n-1) \\ Charles R Greathouse IV, Jun 16 2015
A212699
Main transitions in systems of n particles with spin 2.
Original entry on oeis.org
4, 40, 300, 2000, 12500, 75000, 437500, 2500000, 14062500, 78125000, 429687500, 2343750000, 12695312500, 68359375000, 366210937500, 1953125000000, 10375976562500, 54931640625000, 289916992187500, 1525878906250000, 8010864257812500, 41961669921875000, 219345092773437500
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212700,
A212701,
A212702,
A212703,
A212704 (b = 2, 3, 4, 6, 7, 8, 9, 10).
-
Join[{4},Table[4n*5^(n-1),{n,20}]] (* or *) Join[{4},LinearRecurrence[{10,-25},{4,40},20]] (* Harvey P. Dale, Aug 19 2014 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212699.txt", n, " ", mtrans(n, 5)))
A212701
Main transitions in systems of n particles with spin 3.
Original entry on oeis.org
6, 84, 882, 8232, 72030, 605052, 4941258, 39530064, 311299254, 2421216420, 18643366434, 142367525496, 1079620401678, 8138676874188, 61040076556410, 455765904954528, 3389758918099302, 25124095510618356, 185639150161791186, 1367867422244777160, 10053825553499112126
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212699,
A212700,
A212702,
A212703,
A212704 (b = 2, 3, 4, 5, 6, 8, 9, 10).
-
LinearRecurrence[{14,-49},{6,84},20] (* Harvey P. Dale, Aug 02 2016 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212701.txt", n, " ", mtrans(n, 7)))
-
Vec(6*x/(7*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
A212702
Main transitions in systems of n particles with spin 7/2.
Original entry on oeis.org
7, 112, 1344, 14336, 143360, 1376256, 12845056, 117440512, 1056964608, 9395240960, 82678120448, 721554505728, 6253472382976, 53876069761024, 461794883665920, 3940649673949184, 33495522228568064, 283726776524341248, 2395915001761103872, 20176126330619822080
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212699,
A212700,
A212701,
A212703,
A212704 (b = 2, 3, 4, 5, 6, 7, 9, 10).
-
LinearRecurrence[{16,-64},{7,112},30] (* Harvey P. Dale, Feb 11 2016 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212702.txt", n, " ", mtrans(n, 8)))
-
Vec(7*x/(8*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
A133224
Let P(A) be the power set of an n-element set A and let B be the Cartesian product of P(A) with itself. Remove (y,x) from B when (x,y) is in B and x <> y and let R35 denote the reduced set B. Then a(n) = the sum of the sizes of the union of x and y for every (x,y) in R35.
Original entry on oeis.org
0, 2, 14, 78, 400, 1960, 9312, 43232, 197120, 885888, 3934720, 17307136, 75509760, 327182336, 1409343488, 6039920640, 25770065920, 109522223104, 463857647616, 1958507577344, 8246342451200
Offset: 0
a(2) = 14 because for P(A) = {{},{1},{2},{1,2}} |{} union {1}| = 1, |{} union {2}| = 1, |{} union {1,2}| = 2, |{1} union {2}| = 2, |{1} union {1,2}| = 2 and |{2} union {1,2}| = 2, |{} union {}| = 0, |{1} union {1}| = 1, |{2} union {2}| = 1, |{1,2} union {1,2}| = 2, which sums to 14.
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Index entries for linear recurrences with constant coefficients, signature (12,-52,96,-64).
-
[n*(2^(n-2) + 3*2^(2*n-3)): n in [0..30]]; // Vincenzo Librandi, Jun 10 2011
-
LinearRecurrence[{12,-52,96,-64},{0,2,14,78},30] (* Harvey P. Dale, Jan 24 2019 *)
Showing 1-10 of 10 results.
Comments