A212704
a(n) = 9*n*10^(n-1).
Original entry on oeis.org
9, 180, 2700, 36000, 450000, 5400000, 63000000, 720000000, 8100000000, 90000000000, 990000000000, 10800000000000, 117000000000000, 1260000000000000, 13500000000000000, 144000000000000000, 1530000000000000000, 16200000000000000000, 171000000000000000000, 1800000000000000000000
Offset: 1
-
Rest@ CoefficientList[Series[9 x/(10 x - 1)^2, {x, 0, 18}], x] (* or *)
Array[9 # 10^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
a(n) = mtrans(n, 10);
-
def a(n): return 9*n*10**(n-1)
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Nov 14 2022
A212697
a(n) = 2*n*3^(n-1).
Original entry on oeis.org
2, 12, 54, 216, 810, 2916, 10206, 34992, 118098, 393660, 1299078, 4251528, 13817466, 44641044, 143489070, 459165024, 1463588514, 4649045868, 14721978582, 46490458680, 146444944842, 460255540932, 1443528742014, 4518872583696, 14121476824050, 44059007691036
Offset: 1
n=2, b=3, S={00, 01, 02, 10, 11, 12, 20, 21, 22}, main transitions = {(00,01), (00,10), (01,02), (01,12), (02,12), (10,11), (10,20), (11,12), (11,21), (12,22), (20,21), (21,22)}, main transitions count = 12.
- M. H. Levitt, Spin Dynamics, Basics of Nuclear Magnetic Resonance, 2nd Edition, John Wiley & Sons, 2007, Section 6 (Mathematical techniques).
- J. A. Pople, W. G. Schneider, H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill, 1959, Chapter 6.
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- John Rafael M. Antalan and Francis Joseph H. Campeña, Distance eigenvalues and forwarding indices of dimension-regular generalized recursive circulant graph of order power of two and three, arXiv:2009.11608[math.CO], 2020.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (6,-9).
Cf.
A212698,
A212699,
A212700,
A212701,
A212702,
A212703,
A212704 (b = 4, 5, 6, 7, 8, 9, 10).
-
List([1..30], n-> 2*3^(n-1)*n) # G. C. Greubel, Jun 08 2019
-
[2*3^(n-1)*n: n in [1..30]]; // G. C. Greubel, Jun 08 2019
-
A212697:=n->2*n*3^(n-1): seq(A212697(n), n=1..30); # Wesley Ivan Hurt, Mar 01 2015
-
Table[Sum[Binomial[n, j] j 2^j, {j, n}], {n, 30}] (* Geoffrey Critzer, Mar 01 2015 *)
Table[2*3^(n-1)*n, {n,30}] (* G. C. Greubel, Jun 08 2019 *)
-
mtrans(n,b) = n*(b-1)*b^(n-1);
for (n=1,100,write("b212697.txt",n," ",mtrans(n,3)))
-
[2*3^(n-1)*n for n in (1..30)] # G. C. Greubel, Jun 08 2019
A212698
Main transitions in systems of n particles with spin 3/2.
Original entry on oeis.org
3, 24, 144, 768, 3840, 18432, 86016, 393216, 1769472, 7864320, 34603008, 150994944, 654311424, 2818572288, 12079595520, 51539607552, 219043332096, 927712935936, 3917010173952, 16492674416640, 69269232549888, 290271069732864, 1213860837064704, 5066549580791808
Offset: 1
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (8,-16).
Cf.
A001787,
A212697,
A212699,
A212700,
A212701,
A212702,
A212703,
A212704 (for b = 2, 3, 5, 6, 7, 8, 9, 10).
-
[3*n*4^(n-1): n in [1..30]]; // Vincenzo Librandi, Nov 29 2015
-
Table[Sum[Binomial[n,i] i 3^i,{i,0,n}],{n,1,21}] (* Geoffrey Critzer, Aug 08 2013 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212698.txt", n, " ", mtrans(n, 4)))
A212700
a(n) = 5*n*6^(n-1).
Original entry on oeis.org
5, 60, 540, 4320, 32400, 233280, 1632960, 11197440, 75582720, 503884800, 3325639680, 21767823360, 141490851840, 914248581120, 5877312307200, 37614798766080, 239794342133760, 1523399350026240, 9648195883499520, 60935974001049600, 383896636206612480, 2413064570441564160
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212699,
A212701,
A212702,
A212703,
A212704 (b = 2, 3, 4, 5, 7, 8, 9, 10).
-
Rest@ CoefficientList[Series[5 x/(6 x - 1)^2, {x, 0, 18}], x] (* or *)
Array[5 # 6^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212700.txt", n, " ", mtrans(n, 6)))
A212699
Main transitions in systems of n particles with spin 2.
Original entry on oeis.org
4, 40, 300, 2000, 12500, 75000, 437500, 2500000, 14062500, 78125000, 429687500, 2343750000, 12695312500, 68359375000, 366210937500, 1953125000000, 10375976562500, 54931640625000, 289916992187500, 1525878906250000, 8010864257812500, 41961669921875000, 219345092773437500
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212700,
A212701,
A212702,
A212703,
A212704 (b = 2, 3, 4, 6, 7, 8, 9, 10).
-
Join[{4},Table[4n*5^(n-1),{n,20}]] (* or *) Join[{4},LinearRecurrence[{10,-25},{4,40},20]] (* Harvey P. Dale, Aug 19 2014 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212699.txt", n, " ", mtrans(n, 5)))
A212701
Main transitions in systems of n particles with spin 3.
Original entry on oeis.org
6, 84, 882, 8232, 72030, 605052, 4941258, 39530064, 311299254, 2421216420, 18643366434, 142367525496, 1079620401678, 8138676874188, 61040076556410, 455765904954528, 3389758918099302, 25124095510618356, 185639150161791186, 1367867422244777160, 10053825553499112126
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212699,
A212700,
A212702,
A212703,
A212704 (b = 2, 3, 4, 5, 6, 8, 9, 10).
-
LinearRecurrence[{14,-49},{6,84},20] (* Harvey P. Dale, Aug 02 2016 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212701.txt", n, " ", mtrans(n, 7)))
-
Vec(6*x/(7*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
A212702
Main transitions in systems of n particles with spin 7/2.
Original entry on oeis.org
7, 112, 1344, 14336, 143360, 1376256, 12845056, 117440512, 1056964608, 9395240960, 82678120448, 721554505728, 6253472382976, 53876069761024, 461794883665920, 3940649673949184, 33495522228568064, 283726776524341248, 2395915001761103872, 20176126330619822080
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212699,
A212700,
A212701,
A212703,
A212704 (b = 2, 3, 4, 5, 6, 7, 9, 10).
-
LinearRecurrence[{16,-64},{7,112},30] (* Harvey P. Dale, Feb 11 2016 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212702.txt", n, " ", mtrans(n, 8)))
-
Vec(7*x/(8*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
A235383
Fibonacci numbers that are the product of other Fibonacci numbers.
Original entry on oeis.org
The Fibonacci number 8 is in the sequence because 8=2*2*2, and 2 is a Fibonacci number that is not equal to 8. The Fibonacci number 144 is in the sequence because 144=3*3*2*2*2*2, and both 2 and 3 are Fibonacci numbers that are not equal to 144.
- Yann Bugeaud, Maurice Mignotte, and Samir Siksek, Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Annals of Mathematics, 163 (2006), pp. 969-1018.
- Arpan Saha and Karthik C S, A few equivalences of Wall-Sun-Sun prime conjecture, arXiv:1102.1636 [math.NT], 2011.
- Wikipedia, Carmichael's theorem.
Showing 1-8 of 8 results.
Comments