A212704
a(n) = 9*n*10^(n-1).
Original entry on oeis.org
9, 180, 2700, 36000, 450000, 5400000, 63000000, 720000000, 8100000000, 90000000000, 990000000000, 10800000000000, 117000000000000, 1260000000000000, 13500000000000000, 144000000000000000, 1530000000000000000, 16200000000000000000, 171000000000000000000, 1800000000000000000000
Offset: 1
-
Rest@ CoefficientList[Series[9 x/(10 x - 1)^2, {x, 0, 18}], x] (* or *)
Array[9 # 10^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
a(n) = mtrans(n, 10);
-
def a(n): return 9*n*10**(n-1)
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Nov 14 2022
A212697
a(n) = 2*n*3^(n-1).
Original entry on oeis.org
2, 12, 54, 216, 810, 2916, 10206, 34992, 118098, 393660, 1299078, 4251528, 13817466, 44641044, 143489070, 459165024, 1463588514, 4649045868, 14721978582, 46490458680, 146444944842, 460255540932, 1443528742014, 4518872583696, 14121476824050, 44059007691036
Offset: 1
n=2, b=3, S={00, 01, 02, 10, 11, 12, 20, 21, 22}, main transitions = {(00,01), (00,10), (01,02), (01,12), (02,12), (10,11), (10,20), (11,12), (11,21), (12,22), (20,21), (21,22)}, main transitions count = 12.
- M. H. Levitt, Spin Dynamics, Basics of Nuclear Magnetic Resonance, 2nd Edition, John Wiley & Sons, 2007, Section 6 (Mathematical techniques).
- J. A. Pople, W. G. Schneider, H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill, 1959, Chapter 6.
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- John Rafael M. Antalan and Francis Joseph H. Campeña, Distance eigenvalues and forwarding indices of dimension-regular generalized recursive circulant graph of order power of two and three, arXiv:2009.11608[math.CO], 2020.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (6,-9).
Cf.
A212698,
A212699,
A212700,
A212701,
A212702,
A212703,
A212704 (b = 4, 5, 6, 7, 8, 9, 10).
-
List([1..30], n-> 2*3^(n-1)*n) # G. C. Greubel, Jun 08 2019
-
[2*3^(n-1)*n: n in [1..30]]; // G. C. Greubel, Jun 08 2019
-
A212697:=n->2*n*3^(n-1): seq(A212697(n), n=1..30); # Wesley Ivan Hurt, Mar 01 2015
-
Table[Sum[Binomial[n, j] j 2^j, {j, n}], {n, 30}] (* Geoffrey Critzer, Mar 01 2015 *)
Table[2*3^(n-1)*n, {n,30}] (* G. C. Greubel, Jun 08 2019 *)
-
mtrans(n,b) = n*(b-1)*b^(n-1);
for (n=1,100,write("b212697.txt",n," ",mtrans(n,3)))
-
[2*3^(n-1)*n for n in (1..30)] # G. C. Greubel, Jun 08 2019
A212698
Main transitions in systems of n particles with spin 3/2.
Original entry on oeis.org
3, 24, 144, 768, 3840, 18432, 86016, 393216, 1769472, 7864320, 34603008, 150994944, 654311424, 2818572288, 12079595520, 51539607552, 219043332096, 927712935936, 3917010173952, 16492674416640, 69269232549888, 290271069732864, 1213860837064704, 5066549580791808
Offset: 1
- Stanislav Sykora, Table of n, a(n) for n = 1..100
- Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (8,-16).
Cf.
A001787,
A212697,
A212699,
A212700,
A212701,
A212702,
A212703,
A212704 (for b = 2, 3, 5, 6, 7, 8, 9, 10).
-
[3*n*4^(n-1): n in [1..30]]; // Vincenzo Librandi, Nov 29 2015
-
Table[Sum[Binomial[n,i] i 3^i,{i,0,n}],{n,1,21}] (* Geoffrey Critzer, Aug 08 2013 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212698.txt", n, " ", mtrans(n, 4)))
A212703
Main transitions in systems of n particles with spin 4.
Original entry on oeis.org
8, 144, 1944, 23328, 262440, 2834352, 29760696, 306110016, 3099363912, 30993639120, 306837027288, 3012581722464, 29372671794024, 284688972772848, 2745215094595320, 26354064908115072, 252010745683850376, 2401514164751985936, 22814384565143866392, 216136274827678734240
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212699,
A212700,
A212701,
A212702,
A212704 (b = 2, 3, 4, 5, 6, 7, 8, 10).
-
LinearRecurrence[{18,-81},{8,144},30] (* Harvey P. Dale, Jun 28 2017 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212703.txt", n, " ", mtrans(n, 9)))
-
Vec(8*x/(9*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
-
a(n)=8*n*9^(n-1) \\ Charles R Greathouse IV, Jun 16 2015
A212699
Main transitions in systems of n particles with spin 2.
Original entry on oeis.org
4, 40, 300, 2000, 12500, 75000, 437500, 2500000, 14062500, 78125000, 429687500, 2343750000, 12695312500, 68359375000, 366210937500, 1953125000000, 10375976562500, 54931640625000, 289916992187500, 1525878906250000, 8010864257812500, 41961669921875000, 219345092773437500
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212700,
A212701,
A212702,
A212703,
A212704 (b = 2, 3, 4, 6, 7, 8, 9, 10).
-
Join[{4},Table[4n*5^(n-1),{n,20}]] (* or *) Join[{4},LinearRecurrence[{10,-25},{4,40},20]] (* Harvey P. Dale, Aug 19 2014 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212699.txt", n, " ", mtrans(n, 5)))
A212701
Main transitions in systems of n particles with spin 3.
Original entry on oeis.org
6, 84, 882, 8232, 72030, 605052, 4941258, 39530064, 311299254, 2421216420, 18643366434, 142367525496, 1079620401678, 8138676874188, 61040076556410, 455765904954528, 3389758918099302, 25124095510618356, 185639150161791186, 1367867422244777160, 10053825553499112126
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212699,
A212700,
A212702,
A212703,
A212704 (b = 2, 3, 4, 5, 6, 8, 9, 10).
-
LinearRecurrence[{14,-49},{6,84},20] (* Harvey P. Dale, Aug 02 2016 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212701.txt", n, " ", mtrans(n, 7)))
-
Vec(6*x/(7*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
A212702
Main transitions in systems of n particles with spin 7/2.
Original entry on oeis.org
7, 112, 1344, 14336, 143360, 1376256, 12845056, 117440512, 1056964608, 9395240960, 82678120448, 721554505728, 6253472382976, 53876069761024, 461794883665920, 3940649673949184, 33495522228568064, 283726776524341248, 2395915001761103872, 20176126330619822080
Offset: 1
Cf.
A001787,
A212697,
A212698,
A212699,
A212700,
A212701,
A212703,
A212704 (b = 2, 3, 4, 5, 6, 7, 9, 10).
-
LinearRecurrence[{16,-64},{7,112},30] (* Harvey P. Dale, Feb 11 2016 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
for (n=1, 100, write("b212702.txt", n, " ", mtrans(n, 8)))
-
Vec(7*x/(8*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
A230539
a(n) = 3*n*2^(3*n-1).
Original entry on oeis.org
0, 12, 192, 2304, 24576, 245760, 2359296, 22020096, 201326592, 1811939328, 16106127360, 141733920768, 1236950581248, 10720238370816, 92358976733184, 791648371998720, 6755399441055744, 57420895248973824, 486388759756013568, 4107282860161892352
Offset: 0
-
[3*n*2^(3*n-1): n in [0..20]];
-
A230539:=n->3*n*2^(3*n-1): seq(A230539(n), n=0..30); # Wesley Ivan Hurt, May 03 2017
-
Table[3 n 2^(3 n - 1), {n,0,20}]
LinearRecurrence[{16,-64},{0,12},20] (* Harvey P. Dale, Dec 25 2022 *)
-
a(n) = 3*n*2^(3*n-1); \\ Michel Marcus, Oct 23 2013
A230540
a(n) = 2*n*3^(2*n-1).
Original entry on oeis.org
0, 6, 108, 1458, 17496, 196830, 2125764, 22320522, 229582512, 2324522934, 23245229340, 230127770466, 2259436291848, 22029503845518, 213516729579636, 2058911320946490, 19765548681086304, 189008059262887782, 1801135623563989452, 17110788423857899794
Offset: 0
-
[2*n*3^(2*n-1): n in [0..20]];
-
Table[2 n 3^(2 n - 1), {n, 0, 20}]
-
a(n) = 2*n*3^(2*n-1); \\ Michel Marcus, Oct 23 2013
A203233
(n-1)-st elementary symmetric function of the first n terms of the periodic sequence (3,2,3,2,3,2,...).
Original entry on oeis.org
1, 5, 21, 60, 216, 540, 1836, 4320, 14256, 32400, 104976, 233280, 746496, 1632960, 5178816, 11197440, 35271936, 75582720, 236825856, 503884800, 1572120576, 3325639680, 10339716096, 21767823360, 67480252416, 141490851840
Offset: 1
-
f:= proc(n) if n::even then (5/12)*n*6^(n/2) else (5*n-1)*6^((n+1)/2)/24 fi
end proc:
map(f, [$1..100]); # Robert Israel, May 04 2017
-
r = {3, 2, 3, 2, 3, 2};
s = Flatten[{r, r, r, r, r, r, r, r, r}];
t[n_] := Part[s, Range[n]]
a[n_] := SymmetricPolynomial[n - 1, t[n]]
Table[a[n], {n, 1, 32}] (* A203233 *)
Showing 1-10 of 10 results.
Comments