cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A212697 a(n) = 2*n*3^(n-1).

Original entry on oeis.org

2, 12, 54, 216, 810, 2916, 10206, 34992, 118098, 393660, 1299078, 4251528, 13817466, 44641044, 143489070, 459165024, 1463588514, 4649045868, 14721978582, 46490458680, 146444944842, 460255540932, 1443528742014, 4518872583696, 14121476824050, 44059007691036
Offset: 1

Views

Author

Stanislav Sykora, May 24 2012

Keywords

Comments

Main transitions in systems of n particles with spin 1.
Consider the set S of all b^n numbers which have n digits in base b. Define as "main transition" a pair (x,y) of elements of S such that x and y differ in base b in only one digit which in y exceeds that in x by 1. This particular sequence a(n) gives the number of such transitions for the case b=3.
The terminology originates from quantum theory of coupled spin systems (such as in magnetic resonance) with n particles, each with spin S = (b-1)/2. Then the i-th digit's value in base b can be intended as a label for the b = 2S+1 quantum states of the i-th particle. The most intense main quantum transitions then correspond to the above definition. Due to continuity, the correspondence holds regardless of how strongly coupled are the particles among themselves.
a(n) is the number of functions from {1,2,...,n} into {1,2,3} with a specially designated element of the domain that is restricted to be mapped into {1,2}. Hence the e.g.f. is 2*x*exp(x)^3. - Geoffrey Critzer, Mar 01 2015
a(n) is the distance spectral radius of the dimension-regular generalized recursive circulant graph (commonly known as multiplicative circulant graph) of order 3^n. - John Rafael M. Antalan, Sep 25 2020

Examples

			n=2, b=3, S={00, 01, 02, 10, 11, 12, 20, 21, 22}, main transitions = {(00,01), (00,10), (01,02), (01,12), (02,12), (10,11), (10,20), (11,12), (11,21), (12,22), (20,21), (21,22)}, main transitions count = 12.
		

References

  • M. H. Levitt, Spin Dynamics, Basics of Nuclear Magnetic Resonance, 2nd Edition, John Wiley & Sons, 2007, Section 6 (Mathematical techniques).
  • J. A. Pople, W. G. Schneider, H. J. Bernstein, High-Resolution Nuclear Magnetic Resonance, McGraw-Hill, 1959, Chapter 6.

Crossrefs

Cf. A001787 (b = 2).
Cf. A212698, A212699, A212700, A212701, A212702, A212703, A212704 (b = 4, 5, 6, 7, 8, 9, 10).
Row n=3 of A258997.

Programs

  • GAP
    List([1..30], n-> 2*3^(n-1)*n) # G. C. Greubel, Jun 08 2019
  • Magma
    [2*3^(n-1)*n: n in [1..30]]; // G. C. Greubel, Jun 08 2019
    
  • Maple
    A212697:=n->2*n*3^(n-1): seq(A212697(n), n=1..30); # Wesley Ivan Hurt, Mar 01 2015
  • Mathematica
    Table[Sum[Binomial[n, j] j 2^j, {j, n}], {n, 30}] (* Geoffrey Critzer, Mar 01 2015 *)
    Table[2*3^(n-1)*n, {n,30}] (* G. C. Greubel, Jun 08 2019 *)
  • PARI
    mtrans(n,b) = n*(b-1)*b^(n-1);
    for (n=1,100,write("b212697.txt",n," ",mtrans(n,3)))
    
  • Sage
    [2*3^(n-1)*n for n in (1..30)] # G. C. Greubel, Jun 08 2019
    

Formula

a(n) = n*(b-1)*b^(n-1). For this sequence, set b=3.
From R. J. Mathar, Oct 15 2013: (Start)
G.f.: 2*x/(1-3*x)^2.
a(n) = 2*A027471(n+1). (End)
a(n) = A005843(n)*A000244(n-1). - Omar E. Pol, Jan 21 2014
a(n) = Sum_{j=1..n} binomial(n,j)*j*2^j. - Geoffrey Critzer, Mar 01 2015
E.g.f.: 2*x*exp(3*x). - G. C. Greubel, Jun 08 2019

A212698 Main transitions in systems of n particles with spin 3/2.

Original entry on oeis.org

3, 24, 144, 768, 3840, 18432, 86016, 393216, 1769472, 7864320, 34603008, 150994944, 654311424, 2818572288, 12079595520, 51539607552, 219043332096, 927712935936, 3917010173952, 16492674416640, 69269232549888, 290271069732864, 1213860837064704, 5066549580791808
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Please refer to the general explanation in A212697. This particular sequence is obtained for base b=4, corresponding to spin S = (b-1)/2 = 3/2.
Let P(A) be the power set of an n-element set A and let B be the Cartesian product of P(A) with itself. Then a(n) = the sum of the size of the union of x and y for every (x,y) in B. [See Relation (28): U(n) in document of Ross La Haye in reference.] - Bernard Schott, Jan 04 2013
A002697 is the analogous sequence if "union" is replaced by "intersection" and A002699 is the analogous sequence if "union" is replaced by "symmetric difference". Here, X union Y and Y union X are considered as two distinct Cartesian products, if we want to consider that X Union Y = Y Union X are the same Cartesian product, see A133224. - Bernard Schott Jan 11 2013

Crossrefs

Cf. A001787, A212697, A212699, A212700, A212701, A212702, A212703, A212704 (for b = 2, 3, 5, 6, 7, 8, 9, 10).

Programs

  • Magma
    [3*n*4^(n-1): n in [1..30]]; // Vincenzo Librandi, Nov 29 2015
  • Mathematica
    Table[Sum[Binomial[n,i] i 3^i,{i,0,n}],{n,1,21}] (* Geoffrey Critzer, Aug 08 2013 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212698.txt", n, " ", mtrans(n, 4)))
    

Formula

a(n) = n*(b-1)*b^(n-1). For this sequence, set b=4.
a(n) = 3*n*4^(n-1).
a(n) = 3*A002697(n).
From Geoffrey Critzer, Aug 08 2013: (Start)
a(n) = Sum_{i>=0} binomial(n,i)*i*3^i.
E.g.f.: 3*x*exp(4*x). (End)
G.f.: 3*x/(4*x-1)^2. - Colin Barker, Nov 03 2014
From Elmo R. Oliveira, May 24 2025: (Start)
a(n) = 8*a(n-1) - 16*a(n-2) for n > 2.
a(n) = A008585(n)*A000302(n-1). (End)

A212700 a(n) = 5*n*6^(n-1).

Original entry on oeis.org

5, 60, 540, 4320, 32400, 233280, 1632960, 11197440, 75582720, 503884800, 3325639680, 21767823360, 141490851840, 914248581120, 5877312307200, 37614798766080, 239794342133760, 1523399350026240, 9648195883499520, 60935974001049600, 383896636206612480, 2413064570441564160
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Main transitions in systems of n particles with spin 5/2.
Refer to the general explanation in A212697.
This particular sequence is obtained for base b=6, corresponding to spin S=(b-1)/2=5/2.
Arithmetic derivative of 6^n: a(n) = A003415(6^n). - Bruno Berselli, Oct 22 2013

Crossrefs

Cf. A001787, A212697, A212698, A212699, A212701, A212702, A212703, A212704 (b = 2, 3, 4, 5, 7, 8, 9, 10).

Programs

  • Mathematica
    Rest@ CoefficientList[Series[5 x/(6 x - 1)^2, {x, 0, 18}], x] (* or *)
    Array[5 # 6^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212700.txt", n, " ", mtrans(n, 6)))

Formula

a(n) = n*(b-1)*b^(n-1): for this sequence, set b=6.
From R. J. Mathar, Oct 15 2013: (Start)
G.f.: 5*x/(6*x-1)^2.
a(n) = 5*A053469(n). (End)
From Elmo R. Oliveira, May 14 2025: (Start)
E.g.f.: 5*x*exp(6*x).
a(n) = A008587(n)*A000400(n-1).
a(n) = 12*a(n-1) - 36*a(n-2) for n > 2. (End)

A212703 Main transitions in systems of n particles with spin 4.

Original entry on oeis.org

8, 144, 1944, 23328, 262440, 2834352, 29760696, 306110016, 3099363912, 30993639120, 306837027288, 3012581722464, 29372671794024, 284688972772848, 2745215094595320, 26354064908115072, 252010745683850376, 2401514164751985936, 22814384565143866392, 216136274827678734240
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Please, refer to the general explanation in A212697.
This sequence is for base b=9 (see formula), corresponding to spin S=(b-1)/2=4.

Crossrefs

Cf. A001787, A212697, A212698, A212699, A212700, A212701, A212702, A212704 (b = 2, 3, 4, 5, 6, 7, 8, 10).

Programs

  • Mathematica
    LinearRecurrence[{18,-81},{8,144},30] (* Harvey P. Dale, Jun 28 2017 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212703.txt", n, " ", mtrans(n, 9)))
    
  • PARI
    Vec(8*x/(9*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015
    
  • PARI
    a(n)=8*n*9^(n-1) \\ Charles R Greathouse IV, Jun 16 2015

Formula

a(n) = n*(b-1)*b^(n-1). For this sequence, set b=9.
From Colin Barker, Jun 16 2015: (Start)
a(n) = 18*a(n-1) - 81*a(n-2) for n > 2.
G.f.: 8*x/(9*x-1)^2. (End)
From Elmo R. Oliveira, May 13 2025: (Start)
E.g.f.: 8*x*exp(9*x).
a(n) = 8*A053540(n) = A008590(n)*A001019(n-1). (End)

A081045 10th binomial transform of (1,9,0,0,0,0,0,...).

Original entry on oeis.org

1, 19, 280, 3700, 46000, 550000, 6400000, 73000000, 820000000, 9100000000, 100000000000, 1090000000000, 11800000000000, 127000000000000, 1360000000000000, 14500000000000000, 154000000000000000, 1630000000000000000, 17200000000000000000, 181000000000000000000
Offset: 0

Views

Author

Paul Barry, Mar 04 2003

Keywords

Comments

From Bernard Schott, Nov 12 2022: (Start)
For n >= 1, a(n-1) is the number of digits 1 (or any nonzero digit) that are necessary to write all the n-digit integers, while the corresponding number of digits 0 to write all these n-digit integers is A212704(n-1) for n >=2.
E.g.: a(2-1) = 19 since 19 digits 2's are required to write integers with a digit 2 from 10 up to 99: {12, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 42, 52, 62, 72, 82, 92}.
First difference of A053541. (End)

Crossrefs

Programs

  • Magma
    [(9*n+10)*10^(n-1): n in [0..25]]; // Vincenzo Librandi, Aug 06 2013
  • Mathematica
    CoefficientList[Series[(1 - x)/(1 - 10 x)^2, {x, 0, 30}], x] (* Vincenzo Librandi, Aug 06 2013 *)
    LinearRecurrence[{20,-100},{1,19},20] (* Harvey P. Dale, Dec 28 2023 *)

Formula

a(n) = 20*a(n-1) - 100*a(n-2); a(0)=1, a(1)=19.
a(0)=1; for n>= 1, a(n) = (9*n+10)*10^(n-1) = 10^(n-1)*A017173(n+1).
a(n) = Sum_{k=0..n} (k+1)*9^k*binomial(n, k).
G.f.: (1-x)/(1-10*x)^2.
a(n) = A053541(n+1) - A053541(n), for n >= 1. - Bernard Schott, Nov 12 2022
E.g.f.: exp(10*x)*(1 + 9*x). - Stefano Spezia, Jan 31 2025

A212699 Main transitions in systems of n particles with spin 2.

Original entry on oeis.org

4, 40, 300, 2000, 12500, 75000, 437500, 2500000, 14062500, 78125000, 429687500, 2343750000, 12695312500, 68359375000, 366210937500, 1953125000000, 10375976562500, 54931640625000, 289916992187500, 1525878906250000, 8010864257812500, 41961669921875000, 219345092773437500
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Please, refer to the general explanation in A212697.
This particular sequence is obtained for base b=5, corresponding to spin S=(b-1)/2=2.

Crossrefs

Cf. A001787, A212697, A212698, A212700, A212701, A212702, A212703, A212704 (b = 2, 3, 4, 6, 7, 8, 9, 10).

Programs

  • Mathematica
    Join[{4},Table[4n*5^(n-1),{n,20}]] (* or *) Join[{4},LinearRecurrence[{10,-25},{4,40},20]] (* Harvey P. Dale, Aug 19 2014 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212699.txt", n, " ", mtrans(n, 5)))

Formula

a(n) = n*(b-1)*b^(n-1) where b=5.
a(n) = 10*a(n-1) - 25*a(n-2), a(0)=a(1)=4, a(2)=40. - Harvey P. Dale, Aug 19 2014
From Elmo R. Oliveira, May 13 2025: (Start)
G.f.: 4*x/(5*x-1)^2.
E.g.f.: 4*x*exp(5*x).
a(n) = 4*A053464(n) = A008586(n)*A000351(n-1). (End)

A212701 Main transitions in systems of n particles with spin 3.

Original entry on oeis.org

6, 84, 882, 8232, 72030, 605052, 4941258, 39530064, 311299254, 2421216420, 18643366434, 142367525496, 1079620401678, 8138676874188, 61040076556410, 455765904954528, 3389758918099302, 25124095510618356, 185639150161791186, 1367867422244777160, 10053825553499112126
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Please, refer to the general explanation in A212697.
This sequence is for base b=7 (see formula), corresponding to spin S=(b-1)/2=3.

Crossrefs

Cf. A001787, A212697, A212698, A212699, A212700, A212702, A212703, A212704 (b = 2, 3, 4, 5, 6, 8, 9, 10).

Programs

  • Mathematica
    LinearRecurrence[{14,-49},{6,84},20] (* Harvey P. Dale, Aug 02 2016 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212701.txt", n, " ", mtrans(n, 7)))
    
  • PARI
    Vec(6*x/(7*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015

Formula

a(n) = n*(b-1)*b^(n-1). For this sequence, set b=7.
From Colin Barker, Jun 16 2015: (Start)
a(n) = 14*a(n-1) - 49*a(n-2) for n > 2.
G.f.: 6*x/(7*x-1)^2. (End)
From Elmo R. Oliveira, May 14 2025: (Start)
E.g.f.: 6*x*exp(7*x).
a(n) = 6*A027473(n) = A008588(n)*A000420(n-1). (End)

A212702 Main transitions in systems of n particles with spin 7/2.

Original entry on oeis.org

7, 112, 1344, 14336, 143360, 1376256, 12845056, 117440512, 1056964608, 9395240960, 82678120448, 721554505728, 6253472382976, 53876069761024, 461794883665920, 3940649673949184, 33495522228568064, 283726776524341248, 2395915001761103872, 20176126330619822080
Offset: 1

Views

Author

Stanislav Sykora, May 25 2012

Keywords

Comments

Please, refer to the general explanation in A212697.
This sequence is for base b=8 (see formula), corresponding to spin S=(b-1)/2=7/2.

Crossrefs

Cf. A001787, A212697, A212698, A212699, A212700, A212701, A212703, A212704 (b = 2, 3, 4, 5, 6, 7, 9, 10).

Programs

  • Mathematica
    LinearRecurrence[{16,-64},{7,112},30] (* Harvey P. Dale, Feb 11 2016 *)
  • PARI
    mtrans(n, b) = n*(b-1)*b^(n-1);
    for (n=1, 100, write("b212702.txt", n, " ", mtrans(n, 8)))
    
  • PARI
    Vec(7*x/(8*x-1)^2 + O(x^100)) \\ Colin Barker, Jun 16 2015

Formula

a(n) = n*(b-1)*b^(n-1). For this sequence, set b=8.
From Colin Barker, Jun 16 2015: (Start)
a(n) = 16*a(n-1) - 64*a(n-2) for n > 2.
G.f.: 7*x/(8*x-1)^2. (End)
From Elmo R. Oliveira, May 14 2025: (Start)
E.g.f.: 7*x*exp(8*x).
a(n) = 7*A053539(n) = A008589(n)*A001018(n-1). (End)

A113119 Total number of digits in all n-digit nonnegative integers.

Original entry on oeis.org

10, 180, 2700, 36000, 450000, 5400000, 63000000, 720000000, 8100000000, 90000000000, 990000000000, 10800000000000, 117000000000000, 1260000000000000, 13500000000000000, 144000000000000000, 1530000000000000000, 16200000000000000000, 171000000000000000000
Offset: 1

Views

Author

Alexandre Wajnberg, Jan 03 2006

Keywords

Examples

			a(1)=10 because there are ten one-digit numbers (including the 0).
a(2)=180 because there are 100-10=90 two-digit numbers, for a total of 90*2=180 digits.
		

Crossrefs

Essentially the same as A212704.

Programs

  • Mathematica
    LinearRecurrence[{20,-100},{10,180,2700},20] (* Harvey P. Dale, Dec 09 2021 *)
  • PARI
    Vec(10*x*(1-2*x+10*x^2)/(1-10*x)^2 + O(x^20)) \\ Colin Barker, Aug 05 2016
    
  • Python
    def a(n): return 10 if n == 1 else 9*n*10**(n-1)
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Nov 14 2022

Formula

For n > 1, a(n) = 9*n*10^(n-1).
From Colin Barker, Aug 05 2016: (Start)
a(n) = 20*a(n-1) - 100*a(n-2) for n > 3.
G.f.: 10*x*(1 - 2*x + 10*x^2) / (1-10*x)^2.
(End)
From Bernard Schott, Nov 14 2022: (Start)
a(n) = A212704(n) for n > 1.
a(n) = 9 * A053541(n) for n > 1.
a(n) = 9 * A081045(n-1) + A212704(n-1), for n > 1 (means a(n) = number of nonzero digits + number of zero digits). (End)
E.g.f.: x*(1 + 9*exp(10*x)). - Stefano Spezia, Dec 24 2022

Extensions

More terms from Joshua Zucker, May 08 2006
a(17) corrected by Colin Barker, Aug 05 2016

A033714 Number of zeros in numbers 0 to 999..9 (n digits).

Original entry on oeis.org

1, 10, 190, 2890, 38890, 488890, 5888890, 68888890, 788888890, 8888888890, 98888888890, 1088888888890, 11888888888890, 128888888888890, 1388888888888890, 14888888888888890, 158888888888888890, 1688888888888888890, 17888888888888888890, 188888888888888888890
Offset: 1

Views

Author

Olivier Gorin (gorin(AT)roazhon.inra.fr)

Keywords

Comments

This sequence also gives the total count of digits of n below 10^n. In such counts it makes sense to omit 10^0 as we are interested in having ten digits under each power of 10. For each power of 10 the total number of digits 0-9 is always the total of zeros for the next power. For example, at 10^1 there is 1 of each numeral 0-9, total 10 digits. At 10^2, the number of zeros is 10, with 20 each for the other 9 numerals and so on. - Enoch Haga, May 13 2006
Also the position of 10^n in Champernowne's constant (A033307). See Sikora, p. 3. - Robert G. Wilson v, Jun 29 2014

Crossrefs

Cf. A212704 (first differences).

Programs

  • Magma
    [(9*n*10^n-10*10^n+100)/90: n in [1..20]]; // Vincenzo Librandi, Jul 01 2014
    
  • Mathematica
    a[1] = 1; a[n_] := a[n] = 9*10^(n-2)*(n-1) + a[n-1]; Table[a[n], {n, 1, 17}] (* Jean-François Alcover, Jul 13 2012 *)
    f[n_] := 1 + Sum[9 m*10^(m - 1), {m, n}]; Array[f, 18, 0] (* Robert G. Wilson v, Jun 29 2014 *)
    LinearRecurrence[{21,-120,100},{1,10,190},20] (* Harvey P. Dale, Dec 03 2021 *)
  • PARI
    Vec(-x*(100*x^2-11*x+1)/((x-1)*(10*x-1)^2)  + O(x^100)) \\ Colin Barker, Jan 27 2015

Formula

a(n) = 10^(n-1)*n - (1/9)*10^n + 10/9. - Robert Israel, Jun 30 2014
G.f.: -x*(100*x^2-11*x+1) / ((x-1)*(10*x-1)^2). - Colin Barker, Jan 27 2015
From Bernard Schott, Nov 20 2022: (Start)
a(n) = A033713(n) + 1.
a(n+1) = a(n) + 9 * A053541(n). (End)

Extensions

More terms from Erich Friedman
Showing 1-10 of 12 results. Next