A053541
a(n) = n*10^(n-1).
Original entry on oeis.org
1, 20, 300, 4000, 50000, 600000, 7000000, 80000000, 900000000, 10000000000, 110000000000, 1200000000000, 13000000000000, 140000000000000, 1500000000000000, 16000000000000000, 170000000000000000
Offset: 1
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
-
List([1..20], n-> n*10^(n-1)) # G. C. Greubel, May 16 2019
-
[n*10^(n-1): n in [1..30]]; // Vincenzo Librandi, Jun 06 2011
-
seq(n*10^(n-1), n = 1 .. 40); # Bernard Schott, Nov 17 2022
-
f[n_]:=n*10^(n-1);f[Range[40]] (* Vladimir Joseph Stephan Orlovsky, Feb 09 2011*)
LinearRecurrence[{20,-100},{1,20},20] (* Harvey P. Dale, Aug 08 2023 *)
-
a(n)=n*10^(n-1) \\ Charles R Greathouse IV, Dec 05 2011
-
[n*10^(n-1) for n in (1..20)] # G. C. Greubel, May 16 2019
A212704
a(n) = 9*n*10^(n-1).
Original entry on oeis.org
9, 180, 2700, 36000, 450000, 5400000, 63000000, 720000000, 8100000000, 90000000000, 990000000000, 10800000000000, 117000000000000, 1260000000000000, 13500000000000000, 144000000000000000, 1530000000000000000, 16200000000000000000, 171000000000000000000, 1800000000000000000000
Offset: 1
-
Rest@ CoefficientList[Series[9 x/(10 x - 1)^2, {x, 0, 18}], x] (* or *)
Array[9 # 10^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
a(n) = mtrans(n, 10);
-
def a(n): return 9*n*10**(n-1)
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Nov 14 2022
A113119
Total number of digits in all n-digit nonnegative integers.
Original entry on oeis.org
10, 180, 2700, 36000, 450000, 5400000, 63000000, 720000000, 8100000000, 90000000000, 990000000000, 10800000000000, 117000000000000, 1260000000000000, 13500000000000000, 144000000000000000, 1530000000000000000, 16200000000000000000, 171000000000000000000
Offset: 1
a(1)=10 because there are ten one-digit numbers (including the 0).
a(2)=180 because there are 100-10=90 two-digit numbers, for a total of 90*2=180 digits.
-
LinearRecurrence[{20,-100},{10,180,2700},20] (* Harvey P. Dale, Dec 09 2021 *)
-
Vec(10*x*(1-2*x+10*x^2)/(1-10*x)^2 + O(x^20)) \\ Colin Barker, Aug 05 2016
-
def a(n): return 10 if n == 1 else 9*n*10**(n-1)
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Nov 14 2022
A081044
9th binomial transform of (1,8,0,0,0,0,0,0,.....).
Original entry on oeis.org
1, 17, 225, 2673, 29889, 321489, 3365793, 34543665, 349156737, 3486784401, 34480423521, 338218086897, 3295011258945, 31914537622353, 307565765227809, 2951106226689969, 28207085096966913, 268687927383516945
Offset: 0
-
Table[(8n+9)9^(n-1),{n,0,30}] (*or*) LinearRecurrence[{18, -81}, {1, 17}, 40] (* Vincenzo Librandi, Feb 23 2012 *)
-
a(n) = (8*n+9)*9^(n-1); \\ Altug Alkan, Jul 18 2016
A358439
Number of even digits necessary to write all positive n-digit integers.
Original entry on oeis.org
4, 85, 1300, 17500, 220000, 2650000, 31000000, 355000000, 4000000000, 44500000000, 490000000000, 5350000000000, 58000000000000, 625000000000000, 6700000000000000, 71500000000000000, 760000000000000000, 8050000000000000000, 85000000000000000000, 895000000000000000000
Offset: 1
To write the integers from 10 up to 99, each of the digits 2, 4, 6 and 8 must be used 19 times, and digit 0 must be used 9 times hence a(2) = 4*19 + 9 = 85.
-
seq((5*(9*n-1))*10^(n-2), n = 1 .. 30);
-
a[n_] := 5*(9*n - 1)*10^(n - 2); Array[a, 22] (* Amiram Eldar, Nov 16 2022 *)
A358620
Number of nonzero digits needed to write all nonnegative n-digit integers.
Original entry on oeis.org
9, 171, 2520, 33300, 414000, 4950000, 57600000, 657000000, 7380000000, 81900000000, 900000000000, 9810000000000, 106200000000000, 1143000000000000, 12240000000000000, 130500000000000000, 1386000000000000000, 14670000000000000000, 154800000000000000000
Offset: 1
a(1) = 9 because there are 9 one-digit numbers that are > 0.
a(2) = 171 because there are 90 two-digit numbers, so 90*2 = 180 digits are needed to write these integers, nine of these integers end with 0, and 180-9 = 171.
-
seq((9*(9*n+1))*10^(n-2), n = 1 .. 20);
-
a[n_] := 9*(9*n + 1)*10^(n - 2); Array[a, 20] (* Amiram Eldar, Nov 23 2022 *)
-
a(n)=(81*n+9)*10^(n-2) \\ Charles R Greathouse IV, Nov 29 2022
-
def A358620(n): return 9 if n == 1 else 9*(9*n+1)*10**(n-2) # Chai Wah Wu, Nov 29 2022
A380747
Array read by ascending antidiagonals: A(n,k) = [x^n] (1 - x)/(1 - k*x)^2.
Original entry on oeis.org
1, -1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 8, 5, 1, 0, 1, 20, 21, 7, 1, 0, 1, 48, 81, 40, 9, 1, 0, 1, 112, 297, 208, 65, 11, 1, 0, 1, 256, 1053, 1024, 425, 96, 13, 1, 0, 1, 576, 3645, 4864, 2625, 756, 133, 15, 1, 0, 1, 1280, 12393, 22528, 15625, 5616, 1225, 176, 17, 1
Offset: 0
The array begins as:
1, 1, 1, 1, 1, 1, ...
-1, 1, 3, 5, 7, 9, ...
0, 1, 8, 21, 40, 65, ...
0, 1, 20, 81, 208, 425, ...
0, 1, 48, 297, 1024, 2625, ...
0, 1, 112, 1053, 4864, 15625, ...
0, 1, 256, 3645, 22528, 90625, ...
...
Cf.
A000012 (k=1 or n=0),
A000567 (n=2),
A001792 (k=2),
A007778,
A060747 (n=1),
A081038 (k=3),
A081039 (k=4),
A081040 (k=5),
A081041 (k=6),
A081042 (k=7),
A081043 (k=8),
A081044 (k=9),
A081045 (k=10),
A103532,
A154955,
A380748 (antidiagonal sums).
-
A[0,0]:=1; A[1,0]:=-1; A[n_,k_]:=((k-1)*n+k)k^(n-1); Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
A[n_,k_]:=SeriesCoefficient[(1-x)/(1-k*x)^2,{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten (* or *)
A[n_,k_]:=n!SeriesCoefficient[Exp[k*x](1+(k-1)*x),{x,0,n}]; Table[A[n-k,k],{n,0,10},{k,0,n}]//Flatten
Showing 1-7 of 7 results.
Comments