A212704
a(n) = 9*n*10^(n-1).
Original entry on oeis.org
9, 180, 2700, 36000, 450000, 5400000, 63000000, 720000000, 8100000000, 90000000000, 990000000000, 10800000000000, 117000000000000, 1260000000000000, 13500000000000000, 144000000000000000, 1530000000000000000, 16200000000000000000, 171000000000000000000, 1800000000000000000000
Offset: 1
-
Rest@ CoefficientList[Series[9 x/(10 x - 1)^2, {x, 0, 18}], x] (* or *)
Array[9 # 10^(# - 1) &, 18] (* Michael De Vlieger, Nov 18 2019 *)
-
mtrans(n, b) = n*(b-1)*b^(n-1);
a(n) = mtrans(n, 10);
-
def a(n): return 9*n*10**(n-1)
print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Nov 14 2022
A358439
Number of even digits necessary to write all positive n-digit integers.
Original entry on oeis.org
4, 85, 1300, 17500, 220000, 2650000, 31000000, 355000000, 4000000000, 44500000000, 490000000000, 5350000000000, 58000000000000, 625000000000000, 6700000000000000, 71500000000000000, 760000000000000000, 8050000000000000000, 85000000000000000000, 895000000000000000000
Offset: 1
To write the integers from 10 up to 99, each of the digits 2, 4, 6 and 8 must be used 19 times, and digit 0 must be used 9 times hence a(2) = 4*19 + 9 = 85.
-
seq((5*(9*n-1))*10^(n-2), n = 1 .. 30);
-
a[n_] := 5*(9*n - 1)*10^(n - 2); Array[a, 22] (* Amiram Eldar, Nov 16 2022 *)
A358620
Number of nonzero digits needed to write all nonnegative n-digit integers.
Original entry on oeis.org
9, 171, 2520, 33300, 414000, 4950000, 57600000, 657000000, 7380000000, 81900000000, 900000000000, 9810000000000, 106200000000000, 1143000000000000, 12240000000000000, 130500000000000000, 1386000000000000000, 14670000000000000000, 154800000000000000000
Offset: 1
a(1) = 9 because there are 9 one-digit numbers that are > 0.
a(2) = 171 because there are 90 two-digit numbers, so 90*2 = 180 digits are needed to write these integers, nine of these integers end with 0, and 180-9 = 171.
-
seq((9*(9*n+1))*10^(n-2), n = 1 .. 20);
-
a[n_] := 9*(9*n + 1)*10^(n - 2); Array[a, 20] (* Amiram Eldar, Nov 23 2022 *)
-
a(n)=(81*n+9)*10^(n-2) \\ Charles R Greathouse IV, Nov 29 2022
-
def A358620(n): return 9 if n == 1 else 9*(9*n+1)*10**(n-2) # Chai Wah Wu, Nov 29 2022
A359271
Number of odd digits necessary to write all nonnegative n-digit integers.
Original entry on oeis.org
5, 95, 1400, 18500, 230000, 2750000, 32000000, 365000000, 4100000000, 45500000000, 500000000000, 5450000000000, 59000000000000, 635000000000000, 6800000000000000, 72500000000000000, 770000000000000000, 8150000000000000000
Offset: 1
To write the integers from 10 up to 99, each of the digits 1, 3, 5, 7 and 9, must be used 19 times, hence a(2) = 19*5 = 95.
-
seq(5 * (9*n+1) * 10^(n-2), n=1..18);
-
a[n_] := 5*(9*n + 1)*10^(n - 2); Array[a, 20] (* Amiram Eldar, Dec 23 2022 *)
A173906
Total number of digits of the squares of all n-digit numbers.
Original entry on oeis.org
16, 338, 5183, 69837, 878377, 10583772, 123837722, 1418377223, 15983772233, 177837722339, 1958377223398, 21383772233983, 231837722339831, 2498377223398316, 26783772233983162, 285837722339831620, 3038377223398316206, 32183772233983162066, 339837722339831620668, 3578377223398316206680
Offset: 1
Showing 1-5 of 5 results.
Comments