cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A064532 Total number of holes in decimal expansion of the number n, assuming 4 has no hole.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Oct 07 2001

Keywords

Comments

Assumes that 4 is represented without a hole.

Examples

			8 has two holes so a(8) = 2.
		

Crossrefs

Cf. A064529, A064530. Equals A064531 - 1.
Cf. A358439 (sum by number of digits).

Programs

  • Mathematica
    a[n_ /; 0 <= n <= 9] := a[n] = {1, 0, 0, 0, 0, 0, 1, 0, 2, 1}[[n + 1]]; a[n_] := Total[a[#] + 1 &  /@ (id = IntegerDigits[n])] - Length[id];  Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Nov 22 2013 *)
    Table[DigitCount[x].{0, 0, 0, 0, 0, 1, 0, 2, 1, 1}, {x, 0, 104}] (* Michael De Vlieger, Feb 02 2017, after Zak Seidov at A064692 *)
  • PARI
    h(n) = [1, 0, 0, 0, 0, 0, 1, 0, 2, 1][n];
    a(n) = if (n, my(d=digits(n)); sum(i=1, #d, h(d[i]+1)), 1); \\ Michel Marcus, Nov 11 2022
  • Python
    def A064532(n):
        x=str(n)
        return x.count("0")+x.count("6")+x.count("8")*2+x.count("9") # Indranil Ghosh, Feb 02 2017
    

Formula

a(10i+j) = a(i) + a(j), etc.

Extensions

More terms from Matthew Conroy, Oct 09 2001

A359271 Number of odd digits necessary to write all nonnegative n-digit integers.

Original entry on oeis.org

5, 95, 1400, 18500, 230000, 2750000, 32000000, 365000000, 4100000000, 45500000000, 500000000000, 5450000000000, 59000000000000, 635000000000000, 6800000000000000, 72500000000000000, 770000000000000000, 8150000000000000000
Offset: 1

Views

Author

Bernard Schott, Dec 23 2022

Keywords

Examples

			To write the integers from 10 up to 99, each of the digits 1, 3, 5, 7 and 9, must be used 19 times, hence a(2) = 19*5 = 95.
		

Crossrefs

Programs

  • Maple
    seq(5 * (9*n+1) * 10^(n-2), n=1..18);
  • Mathematica
    a[n_] := 5*(9*n + 1)*10^(n - 2); Array[a, 20] (* Amiram Eldar, Dec 23 2022 *)

Formula

a(n) = 5 * (9*n+1) * 10^(n-2).
a(n) = A279766(10^n-1) - A279766(10^(n-1)-1).
a(n) = A113119(n) - A358439(n).
From Stefano Spezia, Dec 24 2022: (Start)
O.g.f.: 5*x*(1 - x)/(1 - 10*x)^2.
E.g.f.: (exp(10*x)*(1 + 90*x) - 1)/20. (End)
Showing 1-2 of 2 results.